Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
6 result(s) for "Mercer, Arianne"
Sort by:
Seasonal shifts in the gut microbiome indicate plastic responses to diet in wild geladas
Background Adaptive shifts in gut microbiome composition are one route by which animals adapt to seasonal changes in food availability and diet. However, outside of dietary shifts, other potential environmental drivers of gut microbial composition have rarely been investigated, particularly in organisms living in their natural environments. Results Here, we generated the largest wild nonhuman primate gut microbiome dataset to date to identify the environmental drivers of gut microbial diversity and function in 758 samples collected from wild Ethiopian geladas ( Theropithecus gelada ). Because geladas live in a cold, high-altitude environment and have a low-quality grass-based diet, they face extreme thermoregulatory and energetic constraints. We tested how proxies of food availability (rainfall) and thermoregulatory stress (temperature) predicted gut microbiome composition of geladas. The gelada gut microbiome composition covaried with rainfall and temperature in a pattern that suggests distinct responses to dietary and thermoregulatory challenges. Microbial changes were driven by differences in the main components of the diet across seasons: in rainier periods, the gut was dominated by cellulolytic/fermentative bacteria that specialized in digesting grass, while during dry periods the gut was dominated by bacteria that break down starches found in underground plant parts. Temperature had a comparatively smaller, but detectable, effect on the gut microbiome. During cold and dry periods, bacterial genes involved in energy, amino acid, and lipid metabolism increased, suggesting a stimulation of fermentation activity in the gut when thermoregulatory and nutritional stress co-occurred, and potentially helping geladas to maintain energy balance during challenging periods. Conclusion Together, these results shed light on the extent to which gut microbiota plasticity provides dietary and metabolic flexibility to the host, and might be a key factor to thriving in changing environments. On a longer evolutionary timescale, such metabolic flexibility provided by the gut microbiome may have also allowed members of Theropithecus to adopt a specialized diet, and colonize new high-altitude grassland habitats in East Africa. 1akjfNgEHq-cf4GgXinJf8 Video abstract
Multiregion transcriptomic profiling of the primate brain reveals signatures of aging and the social environment
Aging is accompanied by a host of social and biological changes that correlate with behavior, cognitive health and susceptibility to neurodegenerative disease. To understand trajectories of brain aging in a primate, we generated a multiregion bulk (N = 527 samples) and single-nucleus (N = 24 samples) brain transcriptional dataset encompassing 15 brain regions and both sexes in a unique population of free-ranging, behaviorally phenotyped rhesus macaques. We demonstrate that age-related changes in the level and variance of gene expression occur in genes associated with neural functions and neurological diseases, including Alzheimer’s disease. Further, we show that higher social status in females is associated with younger relative transcriptional ages, providing a link between the social environment and aging in the brain. Our findings lend insight into biological mechanisms underlying brain aging in a nonhuman primate model of human behavior, cognition and health.Chiou et al. provide a multiregion bulk (N = 527 samples) and single-nucleus (N = 24 samples) brain transcriptional dataset encompassing 15 brain regions and both sexes in a unique population of free-ranging, behaviorally phenotyped rhesus macaques.
Maternal effects on early-life gut microbiome maturation in a wild nonhuman primate
Early-life gut microbial colonization is an important process shaping host physiology, immunity and long-term health outcomes in humans and other animals. However, our understanding of this dynamic process remains poorly investigated in wild animals, where developmental mechanisms can be better understood within ecological and evolutionary relevant contexts. Using 16s rRNA amplicon sequencing on 525 fecal samples from a large cohort of infant and juvenile geladas (Theropithecus gelada), we characterized gut microbiome maturation during the first three years of life and assessed the role of maternal effects in shaping offspring microbiome assembly. Microbial diversity increased rapidly in the first months of life, followed by more gradual changes until weaning. As expected, changes in gut microbiome composition and function with increasing age reflected progressive dietary transitions: in early infancy when infants rely heavily on their mother’s milk, microbes that facilitate milk glycans and lactose utilization dominated, while later in development as graminoids are progressively introduced into the diet, microbes that metabolize plant complex polysaccharides became dominant. Furthermore, the microbial community of nursing infants born to first-time (primiparous) mothers was more “milk-oriented” compared to similarly-aged infants born to experienced (multiparous) mothers. Comparisons of matched mother-offspring fecal samples to random dyads did not support vertical transmission as a conduit for these maternal effects, which instead could be explained by slower phenotypic development (and associated slower gut microbiome maturation) in infants born to first-time mothers. Together, our findings highlight the dynamic nature of gut colonization in early life and the role of maternal effects in modulating this trajectory in a wild primate.
Seasonal shifts in the gut microbiome indicate plastic responses to diet in wild geladas
Animals have evolved numerous strategies to cope with energetic challenges, with dynamic changes to the gut microbiome potentially constituting one such strategy. We tested how proxies of food availability (rainfall) and thermoregulatory stress (temperature) predicted gut microbiome composition of geladas (Theropithecus geladas), a grazing, high-altitude primate inhabiting a seasonal environment. The gelada gut microbiome varied across seasons, reflecting more efficient digestion of the primary foods eaten at certain times of year. In rainier periods, the gut was dominated by cellulolytic/fermentative bacteria that specialized in digesting grass, while during dry periods the gut was dominated by bacteria that break down starches found in underground plant parts. Temperature had a smaller, but detectable, effect on the gut microbiome. We found an increase in microbes involved in metabolism and energy production during cold and dry periods, suggesting buffering when thermoregulatory and nutritional stress co-occurred. Our results suggest that the gelada gut microbiome may shift to compensate for host diet and energetic demands. Competing Interest Statement The authors have declared no competing interest. Footnotes * https://doi.org/10.5281/zenodo.3932310
A generalizable epigenetic clock captures aging in two nonhuman primates
Epigenetic clocks generated from DNA methylation array data provide important insights into biological aging, disease susceptibility, and mortality risk. However, these clocks cannot be applied to high-throughput, sequence-based datasets more commonly used to study nonhuman animals. Here, we built a generalizable epigenetic clock using genome-wide DNA methylation data from 493 free-ranging rhesus macaques. Using a sliding-window approach that maximizes generalizability across datasets and species, this model predicted age with high accuracy (+/- 1.42 years) in held-out test samples, as well as in two independent test sets: rhesus macaques from a captive population (n=43) and wild baboons in Kenya (n=271). Our model can also be used to generate insight into the factors hypothesized to alter epigenetic aging, including social status and exposure to traumatic events. Our results thus provide a flexible tool for predicting age in other populations and species and illustrate how connecting behavioral data with the epigenetic clock can uncover social influences on biological age. Competing Interest Statement The authors have declared no competing interest.
Evolutionary and biomedical implications of sex differences in the primate brain transcriptome
Humans exhibit sex differences in the prevalence of many neurodevelopmental and neurodegenerative conditions. To better understand the translatability of a critical nonhuman primate model, the rhesus macaque, we generated one of the largest multi-brain region bulk transcriptional datasets for this species and characterized sex-biased gene expression patterns. We demonstrate that these patterns are similar to those in humans and are associated with overlapping regulatory mechanisms, biological processes, and genes implicated in sex-biased human disorders, including autism. We also show that sex-biased genes exhibit greater genetic variance for expression and more tissue-specific expression patterns, which may facilitate the rapid evolution of sex-biased genes. Our findings provide insights into the biological mechanisms underlying sex-biased disease and validate the rhesus macaque model for the study of these conditions. Competing Interest Statement The authors have declared no competing interest.