Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
135 result(s) for "Mercier, Raphaël"
Sort by:
FANCM Limits Meiotic Crossovers
The number of meiotic crossovers (COs) is tightly regulated within a narrow range, despite a large excess of molecular precursors. The factors that limit COs remain largely unknown. Here, using a genetic screen in Arabidopsis thaliana, we identified the highly conserved FANCM helicase, which is required for genome stability in humans and yeasts, as a major factor limiting meiotic CO formation. The fancm mutant has a threefold-increased CO frequency as compared to the wild type. These extra COs arise not from the pathway that accounts for most of the COs in wild type, but from an alternate, normally minor pathway. Thus, FANCM is a key factor imposing an upper limit on the number of meiotic COs, and its manipulation holds much promise for plant breeding.
Turning Meiosis into Mitosis
Apomixis, or asexual clonal reproduction through seeds, is of immense interest due to its potential application in agriculture. One key element of apomixis is apomeiosis, a deregulation of meiosis that results in a mitotic-like division. We isolated and characterised a novel gene that is directly involved in controlling entry into the second meiotic division. By combining a mutation in this gene with two others that affect key meiotic processes, we created a genotype called MiMe in which meiosis is totally replaced by mitosis. The obtained plants produce functional diploid gametes that are genetically identical to their mother. The creation of the MiMe genotype and apomeiosis phenotype is an important step towards understanding and engineering apomixis.
FIGL1 and its novel partner FLIP form a conserved complex that regulates homologous recombination
Homologous recombination is central to repair DNA double-strand breaks, either accidently arising in mitotic cells or in a programed manner at meiosis. Crossovers resulting from the repair of meiotic breaks are essential for proper chromosome segregation and increase genetic diversity of the progeny. However, mechanisms regulating crossover formation remain elusive. Here, we identified through genetic and protein-protein interaction screens FIDGETIN-LIKE-1 INTERACTING PROTEIN (FLIP) as a new partner of the previously characterized anti-crossover factor FIDGETIN-LIKE-1 (FIGL1) in Arabidopsis thaliana. We showed that FLIP limits meiotic crossover together with FIGL1. Further, FLIP and FIGL1 form a protein complex conserved from Arabidopsis to human. FIGL1 interacts with the recombinases RAD51 and DMC1, the enzymes that catalyze the DNA strand exchange step of homologous recombination. Arabidopsis flip mutants recapitulate the figl1 phenotype, with enhanced meiotic recombination associated with change in counts of DMC1 and RAD51 foci. Our data thus suggests that FLIP and FIGL1 form a conserved complex that regulates the crucial step of strand invasion in homologous recombination.
Turning rice meiosis into mitosis
Introduction of clonal reproduction through seeds (apomixis) in crops has the potential to revolutionize agricul- ture by allowing self-propagation of any elite variety, in particular F1 hybrids. In the sexual model plant Arabidopsis thaliana synthetic clonal reproduction through seeds can be artificially implemented by (i) combining three muta- tions to turn meiosis into mitosis (MiMe) and (ii) crossing the obtained clonal gametes with a line expressing modified CENH3 and whose genome is eliminated in the zygote. Here we show that additional combinations of mutations can turn Arabidopsis meiosis into mitosis and that a combination of three mutations in rice (Oryza sativa) efficiently turns meiosis into mitosis, leading to the production of male and female clonal diploid gametes in this major crop. Suc- cessful implementation of the MiMe technology in the phylogenetically distant eudicot Arabidopsis and monocot rice opens doors for its application to any flowering plant and paves the way for introducing apomixis in crop species.
Synthetic Clonal Reproduction Through Seeds
Cloning through seeds has potential revolutionary applications in agriculture, because it would allow vigorous hybrids to be propagated indefinitely. However, asexual seed formation or apomixis, avoiding meiosis and fertilization, is not found in the major food crops. To develop de novo synthesis of apomixis, we crossed Arabidopsis MiMe and dyad mutants that produce diploid clonal gametes to a strain whose chromosomes are engineered to be eliminated after fertilization. Up to 34% of the progeny were clones of their parent, demonstrating the conversion of clonal female or male gametes into seeds. We also show that first-generation cloned plants can be cloned again. Clonal reproduction through seeds can therefore be achieved in a sexual plant by manipulating two to four conserved genes.
Massive crossover elevation via combination of HEI10 and recq4a recq4b during Arabidopsis meiosis
During meiosis, homologous chromosomes undergo reciprocal crossovers, which generate genetic diversity and underpin classical crop improvement. Meiotic recombination initiates from DNA double-strand breaks (DSBs), which are processed into single-stranded DNA that can invade a homologous chromosome. The resulting joint molecules can ultimately be resolved as crossovers. In Arabidopsis, competing pathways balance the repair of ∼100–200 meiotic DSBs into ∼10 crossovers per meiosis, with the excess DSBs repaired as noncrossovers. To bias DSB repair toward crossovers, we simultaneously increased dosage of the procrossover E3 ligase gene HEI10 and introduced mutations in the anticrossovers helicase genes RECQ4A and RECQ4B. As HEI10 and recq4a recq4b increase interfering and noninterfering crossover pathways, respectively, they combine additively to yield a massive meiotic recombination increase. Interestingly, we also show that increased HEI10 dosage increases crossover coincidence, which indicates an effect on interference. We also show that patterns of interhomolog polymorphism and heterochromatin drive recombination increases distally towards the subtelomeres in both HEI10 and recq4a recq4b backgrounds, while the centromeres remain crossover suppressed. These results provide a genetic framework for engineering meiotic recombination landscapes in plant genomes.
Mutations in AtPS1 (Arabidopsis thaliana Parallel Spindle 1) Lead to the Production of Diploid Pollen Grains
Polyploidy has had a considerable impact on the evolution of many eukaryotes, especially angiosperms. Indeed, most--if not all-angiosperms have experienced at least one round of polyploidy during the course of their evolution, and many important crop plants are current polyploids. The occurrence of 2n gametes (diplogametes) in diploid populations is widely recognised as the major source of polyploid formation. However, limited information is available on the genetic control of diplogamete production. Here, we describe the isolation and characterisation of the first gene, AtPS1 (Arabidopsis thaliana Parallel Spindle 1), implicated in the formation of a high frequency of diplogametes in plants. Atps1 mutants produce diploid male spores, diploid pollen grains, and spontaneous triploid plants in the next generation. Female meiosis is not affected in the mutant. We demonstrated that abnormal spindle orientation at male meiosis II leads to diplogamete formation. Most of the parent's heterozygosity is therefore conserved in the Atps1 diploid gametes, which is a key issue for plant breeding. The AtPS1 protein is conserved throughout the plant kingdom and carries domains suggestive of a regulatory function. The isolation of a gene involved in diplogamete production opens the way for new strategies in plant breeding programmes and progress in evolutionary studies.
A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds
The molecular pathways that trigger the initiation of embryogenesis after fertilization in flowering plants, and prevent its occurrence without fertilization, are not well understood 1 . Here we show in rice ( Oryza sativa ) that BABY BOOM1 (BBM1), a member of the AP2 family 2 of transcription factors that is expressed in sperm cells, has a key role in this process. Ectopic expression of BBM1 in the egg cell is sufficient for parthenogenesis, which indicates that a single wild-type gene can bypass the fertilization checkpoint in the female gamete. Zygotic expression of BBM1 is initially specific to the male allele but is subsequently biparental, and this is consistent with its observed auto-activation. Triple knockout of the genes BBM1 , BBM2 and BBM3 causes embryo arrest and abortion, which are fully rescued by male-transmitted BBM1 . These findings suggest that the requirement for fertilization in embryogenesis is mediated by male-genome transmission of pluripotency factors. When genome editing to substitute mitosis for meiosis ( MiMe ) 3 , 4 is combined with the expression of BBM1 in the egg cell, clonal progeny can be obtained that retain genome-wide parental heterozygosity. The synthetic asexual-propagation trait is heritable through multiple generations of clones. Hybrid crops provide increased yields that cannot be maintained by their progeny owing to genetic segregation. This work establishes the feasibility of asexual reproduction in crops, and could enable the maintenance of hybrids clonally through seed propagation 5 , 6 . Misexpression of the sperm-cell-expressed transcription factor BABY BOOM1 in the rice egg cell induces embryo development without fertilization, establishing the feasibility of asexual reproduction in crops and potentially enabling the clonal propagation of hybrids through seeds.
A High Throughput Genetic Screen Identifies New Early Meiotic Recombination Functions in Arabidopsis thaliana
Meiotic recombination is initiated by the formation of numerous DNA double-strand breaks (DSBs) catalysed by the widely conserved Spo11 protein. In Saccharomyces cerevisiae, Spo11 requires nine other proteins for meiotic DSB formation; however, unlike Spo11, few of these are conserved across kingdoms. In order to investigate this recombination step in higher eukaryotes, we took advantage of a high-throughput meiotic mutant screen carried out in the model plant Arabidopsis thaliana. A collection of 55,000 mutant lines was screened, and spo11-like mutations, characterised by a drastic decrease in chiasma formation at metaphase I associated with an absence of synapsis at prophase, were selected. This screen led to the identification of two populations of mutants classified according to their recombination defects: mutants that repair meiotic DSBs using the sister chromatid such as Atdmc1 or mutants that are unable to make DSBs like Atspo11-1. We found that in Arabidopsis thaliana at least four proteins are necessary for driving meiotic DSB repair via the homologous chromosomes. These include the previously characterised DMC1 and the Hop1-related ASY1 proteins, but also the meiotic specific cyclin SDS as well as the Hop2 Arabidopsis homologue AHP2. Analysing the mutants defective in DSB formation, we identified the previously characterised AtSPO11-1, AtSPO11-2, and AtPRD1 as well as two new genes, AtPRD2 and AtPRD3. Our data thus increase the number of proteins necessary for DSB formation in Arabidopsis thaliana to five. Unlike SPO11 and (to a minor extent) PRD1, these two new proteins are poorly conserved among species, suggesting that the DSB formation mechanism, but not its regulation, is conserved among eukaryotes.
Zip4/Spo22 Is Required for Class I CO Formation but Not for Synapsis Completion in Arabidopsis thaliana
In budding yeast meiosis, the formation of class I interference-sensitive crossovers requires the ZMM proteins. These ZMM proteins are essential in forming a mature synaptonemal complex, and a subset of these (Zip2, Zip3, and Zip4) has been proposed to compose the core of synapsis initiation complexes (SICs). Zip4/Spo22 functions with Zip2 to promote polymerization of Zip1 along chromosomes, making it a crucial SIC component. In higher eukaryotes, synapsis and recombination have often been correlated, but it is totally unknown how these two processes are linked. In this study, we present the characterization of a higher eukaryote SIC component homologue: Arabidopsis AtZIP4. We show that mutations in AtZIP4 belong to the same epistasis group as Atmsh4 and eliminate approximately 85% of crossovers (COs). Furthermore, genetic analyses on two adjacent intervals of Chromosome I established that the remaining COs in Atzip4 do not show interference. Lastly, immunolocalization studies showed that polymerization of the central element of the synaptonemal complex is not affected in Atzip4 background, even if it may proceed from fewer sites compared to wild type. These results reveal that Zip4 function in class I CO formation is conserved from budding yeast to Arabidopsis. On the other hand, and contrary to the situation in yeast, mutation in AtZIP4 does not prevent synapsis, showing that both aspects of the Zip4 function (i.e., class I CO maturation and synapsis) can be uncoupled.