Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
25
result(s) for
"Merkl, Philipp"
Sort by:
Twist-tailoring Coulomb correlations in van der Waals homobilayers
2020
The recent discovery of artificial phase transitions induced by stacking monolayer materials at magic twist angles represents a paradigm shift for solid state physics. Twist-induced changes of the single-particle band structure have been studied extensively, yet a precise understanding of the underlying Coulomb correlations has remained challenging. Here we reveal in experiment and theory, how the twist angle alone affects the Coulomb-induced internal structure and mutual interactions of excitons. In homobilayers of WSe
2
, we trace the internal 1
s
–2
p
resonance of excitons with phase-locked mid-infrared pulses as a function of the twist angle. Remarkably, the exciton binding energy is renormalized by up to a factor of two, their lifetime exhibits an enhancement by more than an order of magnitude, and the exciton-exciton interaction is widely tunable. Our work opens the possibility of tailoring quasiparticles in search of unexplored phases of matter in a broad range of van der Waals heterostructures.
The crystallographic orientation of monolayers in van der Waals multi-layers controls their electronic and optical properties. Here the authors show how the twist angle affects Coulomb correlations governing the internal structure and the mutual interaction of excitons in homobilayers of WSe
2
.
Journal Article
Role for a Filamentous Nuclear Assembly of IFI16, DNA, and Host Factors in Restriction of Herpesviral Infection
2019
Mammalian cells exhibit numerous strategies to recognize and contain viral infections. The best-characterized antiviral responses are those that are induced within the cytosol by receptors that activate interferon responses or shut down translation. Antiviral responses also occur in the nucleus, yet these intranuclear innate immune responses are poorly defined at the receptor-proximal level. In this study, we explored the ability of cells to restrict infection by assembling viral DNA into transcriptionally silent heterochromatin within the nucleus. We found that the IFI16 restriction factor forms filaments on DNA within infected cells. These filaments recruit antiviral restriction factors to prevent viral replication in various cell types. Mechanistically, IFI16 filaments inhibit the recruitment of RNA polymerase II to viral genes. We propose that IFI16 filaments with associated restriction factors constitute a “restrictosome” structure that can signal to other parts of the nucleus where foreign DNA is located that it should be silenced.
Several host cell nuclear factors are known to restrict herpes simplex virus 1 (HSV-1) replication, but their mechanisms of action remain to be defined. Interferon-inducible protein 16 (IFI16) and the nuclear domain 10-associated proteins, such as promyelocytic leukemia (PML) protein, localize to input viral genomes, but they are also capable of restricting progeny viral transcription. In this study, we used structured illumination microscopy to show that after HSV DNA replication, IFI16 forms nuclear filamentous structures on DNA within a subset of nuclear replication compartments in HSV-1 ICP0-null mutant virus-infected human cells. The ability to form filaments in different cell types correlates with the efficiency of restriction, and the kinetics of filament formation and epigenetic changes are similar. Thus, both are consistent with the filamentous structures being involved in epigenetic silencing of viral progeny DNA. IFI16 filaments recruit other restriction factors, including PML, Sp100, and ATRX, to aid in the restriction. Although the filaments are only in a subset of the replication compartments, IFI16 reduces the levels of elongation-competent RNA polymerase II (Pol II) in all replication compartments. Therefore, we propose that IFI16 filaments with associated restriction factors that form in replication compartments constitute a “restrictosome” structure that signals in
cis
and
trans
to silence the progeny viral DNA throughout the infected cell nucleus. The IFI16 filamentous structure may constitute the first known nuclear supramolecular organizing center for signaling in the cell nucleus.
IMPORTANCE
Mammalian cells exhibit numerous strategies to recognize and contain viral infections. The best-characterized antiviral responses are those that are induced within the cytosol by receptors that activate interferon responses or shut down translation. Antiviral responses also occur in the nucleus, yet these intranuclear innate immune responses are poorly defined at the receptor-proximal level. In this study, we explored the ability of cells to restrict infection by assembling viral DNA into transcriptionally silent heterochromatin within the nucleus. We found that the IFI16 restriction factor forms filaments on DNA within infected cells. These filaments recruit antiviral restriction factors to prevent viral replication in various cell types. Mechanistically, IFI16 filaments inhibit the recruitment of RNA polymerase II to viral genes. We propose that IFI16 filaments with associated restriction factors constitute a “restrictosome” structure that can signal to other parts of the nucleus where foreign DNA is located that it should be silenced.
Journal Article
Tripartite Motif 22 (TRIM22) protein restricts herpes simplex virus 1 by epigenetic silencing of viral immediate-early genes
by
Letvin, Norman L.
,
Merkl, Philipp E.
,
Lim, So-Yon
in
Biology and Life Sciences
,
Cell Line
,
Cytomegalovirus
2021
Intrinsic resistance is a crucial line of defense against virus infections, and members of the Tripartite Ring Interaction Motif (TRIM) family of proteins are major players in this system, such as cytoplasmic TRIM5α or nuclear promyelocytic leukemia (PML/TRIM19) protein. Previous reports on the antiviral function of another TRIM protein, TRIM22, emphasized its innate immune role as a Type I and Type II interferon-stimulated gene against RNA viruses. This study shows that TRIM22 has an additional intrinsic role against DNA viruses. Here, we report that TRIM22 is a novel restriction factor of HSV-1 and limits ICP0-null virus replication by increasing histone occupancy and heterochromatin, thereby reducing immediate-early viral gene expression. The corresponding wild-type equivalent of the virus evades the TRIM22-specific restriction by a mechanism independent of ICP0-mediated degradation. We also demonstrate that TRIM22 inhibits other DNA viruses, including representative members of the β- and γ- herpesviruses. Allelic variants in
TRIM22
showed different degrees of anti-herpesviral activity; thus,
TRIM22
genetic variability may contribute to the varying susceptibility to HSV-1 infection in humans. Collectively, these results argue that TRIM22 is a novel restriction factor and expand the list of restriction factors functioning in the infected cell nucleus to counter DNA virus infection.
Journal Article
Proximity control of interlayer exciton-phonon hybridization in van der Waals heterostructures
by
Berghäuser, Gunnar
,
Liebich, Marlene
,
Hofmeister, Isabella
in
140/125
,
639/624/1107/527/2257
,
639/766/119/1000/1018
2021
Van der Waals stacking has provided unprecedented flexibility in shaping many-body interactions by controlling electronic quantum confinement and orbital overlap. Theory has predicted that also electron-phonon coupling critically influences the quantum ground state of low-dimensional systems. Here we introduce proximity-controlled strong-coupling between Coulomb correlations and lattice dynamics in neighbouring van der Waals materials, creating new electrically neutral hybrid eigenmodes. Specifically, we explore how the internal orbital 1
s
-2
p
transition of Coulomb-bound electron-hole pairs in monolayer tungsten diselenide resonantly hybridizes with lattice vibrations of a polar capping layer of gypsum, giving rise to exciton-phonon mixed eigenmodes, called excitonic Lyman polarons. Tuning orbital exciton resonances across the vibrational resonances, we observe distinct anticrossing and polarons with adjustable exciton and phonon compositions. Such proximity-induced hybridization can be further controlled by quantum designing the spatial wavefunction overlap of excitons and phonons, providing a promising new strategy to engineer novel ground states of two-dimensional systems.
Here, the authors demonstrate proximity-controlled strong-coupling between Coulomb correlations and lattice dynamics in neighbouring van der Waals materials (WSe
2
and a gypsum layer), creating electrically neutral hybrid exciton-phonon eigenmodes called
excitonic Lyman polarons
.
Journal Article
Thiolutin is a zinc chelator that inhibits the Rpn11 and other JAMM metalloproteases
2017
The bicyclic disulfide–containing compound thiolutin has broad antimicrobial activity and targets the essential proteasomal deubiquitinase Rpn11 and other metalloproteases, leading to inhibition of enzymatic activity through a mechanism involving zinc chelation.
Thiolutin is a disulfide-containing antibiotic and anti-angiogenic compound produced by
Streptomyces
. Its biological targets are not known. We show that reduced thiolutin is a zinc chelator that inhibits the JAB1/MPN/Mov34 (JAMM) domain–containing metalloprotease Rpn11, a deubiquitinating enzyme of the 19S proteasome. Thiolutin also inhibits the JAMM metalloproteases Csn5, the deneddylase of the COP9 signalosome; AMSH, which regulates ubiquitin-dependent sorting of cell-surface receptors; and BRCC36, a K63-specific deubiquitinase of the BRCC36-containing isopeptidase complex and the BRCA1–BRCA2-containing complex. We provide evidence that other dithiolopyrrolones also function as inhibitors of JAMM metalloproteases.
Journal Article
The Reb1-homologue Ydr026c/Nsi1 is required for efficient RNA polymerase I termination in yeast
by
Hamperl, Stephan
,
Williams, Lydia
,
Gadal, Olivier
in
Amino Acid Sequence
,
Cellular biology
,
DNA-Binding Proteins - metabolism
2012
Several DNA
cis
‐elements and
trans
‐acting factors were described to be involved in transcription termination and to release the elongating RNA polymerases from their templates. Different models for the molecular mechanism of transcription termination have been suggested for eukaryotic RNA polymerase I (Pol I) from results of
in vitro
and
in vivo
experiments. To analyse the molecular requirements for yeast RNA Pol I termination, an
in vivo
approach was used in which efficient termination resulted in growth inhibition. This led to the identification of a Myb‐like protein, Ydr026c, as
bona fide
termination factor, now designated Nsi1 (NTS1 silencing protein 1), since it was very recently described as silencing factor of ribosomal DNA. Possible Nsi1 functions in regard to the mechanism of transcription termination are discussed.
Employing insightful genetic experiments, this paper identifies
cis
‐ and
trans
‐acting factors that influence termination of Pol I transcription on ribosomal genes with further reaching implications for general mechanisms of transcription termination.
Journal Article
Ultrafast transition between exciton phases in van der Waals heterostructures
2019
Heterostructures of atomically thin van der Waals bonded monolayers have opened a unique platform to engineer Coulomb correlations, shaping excitonic1–3, Mott insulating4 or superconducting phases5,6. In transition metal dichalcogenide heterostructures7, electrons and holes residing in different monolayers can bind into spatially indirect excitons1,3,8–11 with a strong potential for optoelectronics11,12, valleytronics1,3,13, Bose condensation14, superfluidity14,15 and moiré-induced nanodot lattices16. Yet these ideas require a microscopic understanding of the formation, dissociation and thermalization dynamics of correlations including ultrafast phase transitions. Here we introduce a direct ultrafast access to Coulomb correlations between monolayers, where phase-locked mid-infrared pulses allow us to measure the binding energy of interlayer excitons in WSe2/WS2 hetero-bilayers by revealing a novel 1s–2p resonance, explained by a fully quantum mechanical model. Furthermore, we trace, with subcycle time resolution, the transformation of an exciton gas photogenerated in the WSe2 layer directly into interlayer excitons. Depending on the stacking angle, intra- and interlayer species coexist on picosecond scales and the 1s–2p resonance becomes renormalized. Our work provides a direct measurement of the binding energy of interlayer excitons and opens the possibility to trace and control correlations in novel artificial materials.Femtosecond pump–probe measurements of Coulomb correlations in WS2/WSe2 heterostructures reveal the interlayer exciton binding energy, determined from the 1s–2p resonance, as well as the dynamics of the conversion of intra- to interlayer excitons.
Journal Article
RNA polymerase I passage through nucleosomes depends on its lobe binding subunits
by
Griesenbeck, Joachim
,
Schwank, Katrin
,
Engel, Christoph
in
Biochemistry
,
Chromatin
,
DNA-directed RNA polymerase
2019
RNA polymerase I (Pol I) is a highly efficient enzyme specialized to synthesize most of the ribosomal RNA. After nucleosome deposition at each round of replication the Pol I transcription machinery has to deal with nucleosomal barriers. It was suggested that Pol I-associated factors facilitate chromatin transcription, but it is not known whether Pol I has an intrinsic capacity to transcribe through nucleosomes. Here we used in vitro transcription assays to study purified Pol I of the yeast S. cerevisiae and Pol I mutants in comparison to Pol II and Pol III to pass a nucleosome. Under identical conditions, purified Pol I and Pol III, but not Pol II, were able to transcribe nucleosomal templates. Pol I mutants lacking either the heterodimeric subunit Rpa34.5/Rpa49 or the C-terminal part of the specific subunit Rpa12.2 showed a lower processivity on naked DNA templates, which was even more reduced in the presence of a nucleosome. The contribution of Pol I specific subunit domains to efficient passage through nucleosomes in context with transcription rate and processivity is discussed.
RNA polymerase I transcription fidelity, speed and processivity depend on the interplay of its lobe binding subunits
by
Griesenbeck, Joachim
,
Pilsl, Michael
,
Tschochner, Herbert
in
Biochemistry
,
DNA-directed RNA polymerase
,
Elongation
2018
Eukaryotic RNA polymerases I and III (Pol I and III) consist of core subunits, which are conserved in RNA polymerase II (Pol II). Additionally, Pol I and III have specific subunits, associating with the so-called 'lobe' structure first described within Pol II. In Pol I of the yeast S. cerevisiae, these are Rpa34.5, and the N-terminal domains of Rpa49 and Rpa12.2, here referred to as the lobe-binding module (lb-module). We analyzed functions of the lb-module in a defined in vitro transcription system. Cooperation between lb-module components influenced transcription fidelity, elongation speed, and release of stalled Pol I complexes to continue elongation. Interestingly, lb-module containing Pol I and III, but not Pol II, were able to transcribe nucleosomal templates. Our data suggest, how the Pol I specific subunits may contribute to accurate and processive transcription of ribosomal RNA genes.