Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3
result(s) for
"Merlin, Bernard Mefi"
Sort by:
Tumour mutations in long noncoding RNAs enhance cell fitness
2023
Long noncoding RNAs (lncRNAs) are linked to cancer via pathogenic changes in their expression levels. Yet, it remains unclear whether lncRNAs can also impact tumour cell fitness via function-altering somatic “driver” mutations. To search for such driver-lncRNAs, we here perform a genome-wide analysis of fitness-altering single nucleotide variants (SNVs) across a cohort of 2583 primary and 3527 metastatic tumours. The resulting 54 mutated and positively-selected lncRNAs are significantly enriched for previously-reported cancer genes and a range of clinical and genomic features. A number of these lncRNAs promote tumour cell proliferation when overexpressed in in vitro models. Our results also highlight a dense SNV hotspot in the widely-studied
NEAT1
oncogene. To directly evaluate the functional significance of
NEAT1
SNVs, we use in cellulo mutagenesis to introduce tumour-like mutations in the gene and observe a significant and reproducible increase in cell fitness, both in vitro and in a mouse model. Mechanistic studies reveal that SNVs remodel the
NEAT1
ribonucleoprotein and boost subnuclear paraspeckles. In summary, this work demonstrates the utility of driver analysis for mapping cancer-promoting lncRNAs, and provides experimental evidence that somatic mutations can act through lncRNAs to enhance pathological cancer cell fitness.
The role of mutations within long noncoding RNAs (lncRNAs) exons on tumour cell fitness remains to be explored. Here, the authors investigate the landscape of driver lncRNAs in primary and metastatic samples and validate the functional significance of single nucleotide variants in the NEAT1 oncogene in vitro and in vivo.
Journal Article
Tumour mutations in long noncoding RNAs enhance cell fitness
by
Wenger, Corina
,
Marianna Julikruithof-De Julio
,
Zwyssig, Sandra
in
Cancer
,
Carcinogenesis
,
Cell proliferation
2022
Long noncoding RNAs (lncRNAs) can act as tumour suppressors or oncogenes to repress/promote tumour cell proliferation via RNA-dependent mechanisms. Recently, genome sequencing has identified elevated densities of tumour somatic single nucleotide variants (SNVs) in lncRNA genes. However, this has been attributed to phenotypically-neutral passenger processes, and the existence of positively-selected fitness-altering driver SNVs acting via lncRNAs has not been addressed. We developed and used ExInAtor2, an improved driver-discovery pipeline, to map pancancer and cancer-specific mutated lncRNAs across an extensive cohort of 2583 primary and 3527 metastatic tumours. The 54 resulting lncRNAs are mostly linked to cancer for the first time. Their significance is supported by a range of clinical and genomic evidence, and display oncogenic potential when experimentally expressed in matched tumour models. Our results revealed a striking SNV hotspot in the iconic NEAT1 oncogene, which was ascribed by previous studies to passenger processes. To directly evaluate the functional significance of NEAT1 SNVs, we used in cellulo mutagenesis to introduce tumour-like mutations in the gene and observed a consequent increase in cell proliferation in both transformed and normal backgrounds. Mechanistic analyses revealed that SNVs alter NEAT1 ribonucleoprotein assembly and boost subnuclear paraspeckles. This is the first experimental evidence that mutated lncRNAs can contribute to the pathological fitness of tumour cells. Competing Interest Statement The authors have declared no competing interest. Footnotes * Correction to figure captions; Correction of misspelled words