Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
439
result(s) for
"Merrick, James"
Sort by:
role of renewable energy in climate stabilization: results from the EMF27 scenarios
by
Wada, Kenichi
,
Pietzcker, Robert
,
Krey, Volker
in
Alternative energy sources
,
Atmospheric Sciences
,
Availability
2014
This paper uses the EMF27 scenarios to explore the role of renewable energy (RE) in climate change mitigation. Currently RE supplies almost 20 % of global electricity demand. Almost all EMF27 mitigation scenarios show a strong increase in renewable power production, with a substantial ramp-up of wind and solar power deployment. In many scenarios, renewables are the most important long-term mitigation option for power supply. Wind energy is competitive even without climate policy, whereas the prospects of solar photovoltaics (PV) are highly contingent on the ambitiousness of climate policy. Bioenergy is an important and versatile energy carrier; however—with the exception of low temperature heat—there is less scope for renewables other than biomass for non-electric energy supply. Despite the important role of wind and solar power in climate change mitigation scenarios with full technology availability, limiting their deployment has a relatively small effect on mitigation costs, if nuclear and carbon capture and storage (CCS)—which can serve as substitutes in low-carbon power supply—are available. Limited bioenergy availability in combination with limited wind and solar power by contrast, results in a more substantial increase in mitigation costs. While a number of robust insights emerge, the results on renewable energy deployment levels vary considerably across the models. An in-depth analysis of a subset of EMF27 reveals substantial differences in modeling approaches and parameter assumptions. To a certain degree, differences in model results can be attributed to different assumptions about technology costs, resource potentials and systems integration.
Journal Article
Simulating Annual Variation in Load, Wind, and Solar by Representative Hour Selection
by
Blanford, Geoffrey J.
,
Young, David T.
,
Bistline, John E.T.
in
Alternative energy
,
Annual variations
,
Decisions
2018
The spatial and temporal variability of renewable generation has important economic implications for electric sector investments and system operations. This study describes a method for selecting representative hours to preserve key distributional requirements for regional load, wind, and solar time series with a two-orders-of-magnitude reduction in dimensionality. We describe the implementation of this procedure in the US-REGEN model and compare impacts on energy system decisions with more common approaches. The results demonstrate how power sector modeling and capacity planning decisions are sensitive to the representation of intra-annual variation and how our proposed approach outperforms simple heuristic selection procedures with lower resolution. The representative hour approach preserves key properties of the joint underlying hourly distributions, whereas seasonal average approaches over-value wind and solar at higher penetration levels and under-value investment in dispatchable capacity by inaccurately capturing the corresponding residual load duration curves.
Journal Article
A Clean Energy Standard Analysis with the US-REGEN Model
by
Blanford, Geoffrey J.
,
Merrick, James H.
,
Young, David
in
Alternative approaches
,
Capital
,
Clean energy
2014
A clean energy standard (CES) is a potential policy alternative to reduce carbon emissions in the electric sector. We analyze this policy under a range of technological assumptions, expanding on the Energy Modeling Forum (EMF) 24 study scenarios, using a new modeling tool, US-REGEN. We describe three innovative features of the model: treatment of spatial and temporal variability of renewable resources, cost-of-service electric sector pricing, and explicit representation of energy end-use specific capital.
We find that varying technology assumptions results in vastly different futures, with large contrasts in the distribution and scale of inter-regional financial flows, and in the generation mix. We explore regional differences in how the costs of CES credits are passed through with cost-of-service vs. competitive pricing. Finally, we compare the CES to an economy-wide emissions cap. We find that although the two policies result in a similar generation mix, price and electricity end-use results differ.
Journal Article
A Clean Energy Standard Analysis with the US-REGEN Model
by
Blanford, Geoffrey J
,
Merrick, James H
,
Young, David
in
Air pollution
,
Air pollution control
,
Analysis
2014
A clean energy standard (CES) is a potential policy alternative to reduce carbon emissions in the electric sector. We analyze this policy under a range of technological assumptions, expanding on the Energy Modeling Forum (EMF) 24 study scenarios, using a new modeling tool, US-REGEN. We describe three innovative features of the model: treatment of spatial and temporal variability of renewable resources, cost-of-service electric sector pricing, and explicit representation of energy end-use specific capital.
Journal Article
Sola scriptura and the regula fidei: the Reformation scripture principle and early oral tradition in Martin Chemnitz' Examination of the Council of Trent
2010
How could a sixteenth-century Protestant reformer who championed sola scriptura defend against the charge of novelty? In particular, how did a reformer understand the post-apostolic church's regula fidei as a possible early counter-precedent to the scripture principle? And what does the answer to these questions tell us about the Reformation scripture principle? These are the principal questions with which this article is concerned. By looking at Martin Chemnitz's Examination of the Council of Trent, I show that Chemnitz rebutted the charge of novelty by returning the favour, that is, he rhetorically situated the Catholics alongside the early Gnostics since both believed in an oral tradition that differed substantially from scripture. Furthermore, I find that Chemnitz contended that Irenaeus’ and Tertullian's use of the regula fidei actually supported sola scriptura since these fathers never posited a substantial distinction between scripture and tradition and, in fact, held that the content of the rule was recorded in scripture. Chemnitz concluded that Protestants holding the scripture principle are the ones who are truly faithful to early church tradition in general and the rule in particular.
Journal Article
Trade-offs between mitigation costs and temperature change
by
Rose, Steven
,
Merrick, James
,
Blanford, Geoffrey
in
21st century
,
Assessments
,
Atmospheric Sciences
2014
This paper uses the MERGE integrated assessment model to identify the least-cost mitigation strategy for achieving a range of climate policies. Mitigation is measured in terms of GDP foregone. This is not a benefit-cost analysis. No attempt is made to calculate the reduction in damages brought about by a particular policy. Assumptions are varied regarding the availability of energy-producing and energy-using technologies. We find pathways with substantial reductions in temperature change, with the cost of reductions varying significantly, depending on policy and technology assumptions. The set of scenarios elucidates the potential energy system transformation demands that could be placed on society. We find that policy that allows for “overshoot” of a radiative forcing target during the century results in lower costs, but also a higher temperature at the end of the century. We explore the implications of the costs and availability of key mitigation technologies, including carbon capture and storage (CCS), bioenergy, and their combination, known as BECS, as well as nuclear and energy efficiency. The role of “negative emissions” via BECS in particular is examined. Finally, we demonstrate the implications of nationally adopted emissions timetables based on articulated goals as a counterpoint to a global stabilization approach.
Journal Article
Estimating Power Sector Leakage Risks and Provincial Impacts of Canadian Carbon Pricing
2020
Carbon pricing systems have emerged in Canada at provincial and federal levels to reduce CO2 emissions. However, cross-border electricity trade with the U.S. is already extensive, and although Canada is currently a net exporter, policy changes could alter these trade dynamics. Since CO2 emissions are currently unregulated in many U.S. states, there is a concern that this incomplete regulatory coverage will lead to emissions leakage, as electric generation and emissions shift toward these unregulated regions. This paper examines potential power sector emissions leakage and distributional implications across provinces from Canadian carbon pricing. Using an integrated model of electric sector investments and operations with detailed spatial and temporal resolutions, the analysis demonstrates how emissions leakage through trade adjustments can be non-trivial fractions of the intended emissions reductions even in the presence of leakage containment measures. Magnitudes of long-run leakage rates from Canadian carbon pricing depend on market and policy assumptions (e.g., natural gas prices, projected load growth, long-run demand elasticities, timing of future U.S. CO2 policy), ranging from 13% (high gas price scenario with border carbon adjustments) to 76% (lower gas price scenario without antileakage measures), which are higher than reported literature values for national policies. When leakage containment measures are implemented, net emissions and leakage rates decrease, but gross emissions in Canada and policy costs increase. Leakage persists in alternate scenarios with constrained transmission expansion, higher natural gas prices, lower load growth, higher price elasticities of demand, and U.S. adoption of carbon pricing, but leakage rates decrease under these conditions.
Journal Article
A Clean Energy Standard Analysis with the US-REGEN Model
by
Blanford, Geoffrey J
,
Merrick, James H
,
Young, David
in
Alternative energy sources
,
Carbon
,
Clean energy
2014
A clean energy standard (CES) is a potential policy alternative to reduce carbon emissions in the electric sector. We analyze this policy under a range of technological assumptions, expanding on the Energy Modeling Forum (EMF) 24 study scenarios, using a new modeling tool, US-REGEN. We describe three innovative features of the model: treatment of spatial and temporal variability of renewable resources, cost-of-service electric sector pricing, and explicit representation of energy end-use specific capital. We find that varying technology assumptions results in vastly different futures, with large contrasts in the distribution and scale of inter-regional financial flows, and in the generation mix. We explore regional differences in how the costs of CES credits are passed through with cost-of-service vs. competitive pricing. Finally, we compare the CES to an economy-wide emissions cap. We find that although the two policies result in a similar generation mix, price and electricity end-use results differ.
Journal Article