Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
4 result(s) for "Mesones, Sebastian"
Sort by:
Down the membrane hole: Ion channels in protozoan parasites
Parasitic diseases caused by protozoans are highly prevalent around the world, disproportionally affecting developing countries, where coinfection with other microorganisms is common. Control and treatment of parasitic infections are constrained by the lack of specific and effective drugs, plus the rapid emergence of resistance. Ion channels are main drug targets for numerous diseases, but their potential against protozoan parasites is still untapped. Ion channels are membrane proteins expressed in all types of cells, allowing for the flow of ions between compartments, and regulating cellular functions such as membrane potential, excitability, volume, signaling, and death. Channels and transporters reside at the interface between parasites and their hosts, controlling nutrient uptake, viability, replication, and infectivity. To understand how ion channels control protozoan parasites fate and to evaluate their suitability for therapeutics, we must deepen our knowledge of their structure, function, and modulation. However, methodological approaches commonly used in mammalian cells have proven difficult to apply in protozoans. This review focuses on ion channels described in protozoan parasites of clinical relevance, mainly apicomplexans and trypanosomatids, highlighting proteins for which molecular and functional evidence has been correlated with their physiological functions.
Down the membrane hole: Ion channels in protozoan parasites
Parasitic diseases caused by protozoans are highly prevalent around the world, disproportionally affecting developing countries, where coinfection with other microorganisms is common. Control and treatment of parasitic infections are constrained by the lack of specific and effective drugs, plus the rapid emergence of resistance. Ion channels are main drug targets for numerous diseases, but their potential against protozoan parasites is still untapped. Ion channels are membrane proteins expressed in all types of cells, allowing for the flow of ions between compartments, and regulating cellular functions such as membrane potential, excitability, volume, signaling, and death. Channels and transporters reside at the interface between parasites and their hosts, controlling nutrient uptake, viability, replication, and infectivity. To understand how ion channels control protozoan parasites fate and to evaluate their suitability for therapeutics, we must deepen our knowledge of their structure, function, and modulation. However, methodological approaches commonly used in mammalian cells have proven difficult to apply in protozoans. This review focuses on ion channels described in protozoan parasites of clinical relevance, mainly apicomplexans and trypanosomatids, highlighting proteins for which molecular and functional evidence has been correlated with their physiological functions.
growth-defense trade-off and habitat specialization by plants in Amazonian forests
Tropical forests include a diversity of habitats, which has led to specialization in plants. Near Iquitos, in the Peruvian Amazon, nutrient-rich clay forests surround nutrient-poor white-sand forests, each harboring a unique composition of habitat specialist trees. We tested the hypothesis that the combination of impoverished soils and herbivory creates strong natural selection for plant defenses in white-sand forest, while rapid growth is favored in clay forests. Recently, we reported evidence from a reciprocal-transplant experiment that manipulated the presence of herbivores and involved 20 species from six genera, including phylogenetically independent pairs of closely related white-sand and clay specialists. When protected from herbivores, clay specialists exhibited faster growth rates than white-sand specialists in both habitats. But, when unprotected, white-sand specialists outperformed clay specialists in white-sand habitat, and clay specialists outperformed white-sand specialists in clay habitat. Here we test further the hypothesis that the growth-defense trade-off contributes to habitat specialization by comparing patterns of growth, herbivory, and defensive traits in these same six genera of white-sand and clay specialists. While the probability of herbivore attack did not differ between the two habitats, an artificial defoliation experiment showed that the impact of herbivory on plant mortality was significantly greater in white-sand forests. We quantified the amount of terpenes, phenolics, leaf toughness, and available foliar protein for the plants in the experiment. Different genera invested in different defensive strategies, and we found strong evidence for phylogenetic constraint in defense type. Overall, however, we found significantly higher total defense investment for white-sand specialists, relative to their clay specialist congeners. Furthermore, herbivore resistance consistently exhibited a significant trade-off against growth rate in each of the six phylogenetically independent species-pairs. These results confirm theoretical predictions that a trade-off exists between growth rate and defense investment, causing white-sand and clay specialists to evolve divergent strategies. We propose that the growth-defense trade-off is universal and provides an important mechanism by which herbivores govern plant distribution patterns across resource gradients.