Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
62 result(s) for "Meunier Martine"
Sort by:
Optic flow selectivity in the macaque parieto-occipital sulcus
In humans, several neuroimaging studies have demonstrated that passive viewing of optic flow stimuli activates higher-level motion areas, like V6 and the cingulate sulcus visual area (CSv). In macaque, there are few studies on the sensitivity of V6 and CSv to egomotion compatible optic flow. The only fMRI study on this issue revealed selectivity to egomotion compatible optic flow in macaque CSv but not in V6 (Cotterau et al. Cereb Cortex 27(1):330–343, 2017, but see Fan et al. J Neurosci. 35:16303–16314, 2015). Yet, it is unknown whether monkey visual motion areas MT + and V6 display any distinctive fMRI functional profile relative to the optic flow stimulation, as it is the case for the homologous human areas (Pitzalis et al., Cereb Cortex 20(2):411–424, 2010). Here, we described the sensitivity of the monkey brain to two motion stimuli (radial rings and flow fields) originally used in humans to functionally map the motion middle temporal area MT + (Tootell et al. J Neurosci 15: 3215-3230, 1995a; Nature 375:139–141, 1995b) and the motion medial parietal area V6 (Pitzalis et al. 2010), respectively. In both animals, we found regions responding only to optic flow or radial rings stimulation, and regions responding to both stimuli. A region in the parieto-occipital sulcus (likely including V6) was one of the most highly selective area for coherently moving fields of dots, further demonstrating the power of this type of stimulation to activate V6 in both humans and monkeys. We did not find any evidence that putative macaque CSv responds to Flow Fields.
Peer Presence Effects on Eye Movements and Attentional Performance
\"Social facilitation\" refers to the enhancement or impairment of performance engendered by the mere presence of others. It has been demonstrated for a diversity of behaviors. This study assessed whether it also concerns attention and eye movements and if yes, which decision-making mechanisms it affects. Human volunteers were tested in three different tasks (saccades, visual search, and continuous performance) either alone or in the presence of a familiar peer. The results failed to reveal any significant peer influence on the visual search and continuous performance tasks. For saccades, by contrast, they showed a negative or positive peer influence depending on the complexity of the testing protocol. Pro-and anti-saccades were both inhibited when pseudorandomly mixed, and both facilitated when performed separately. Peer presence impaired or improved reaction times, i.e., the speed to initiate the saccade, as well as peak velocity, i.e., the driving force moving the eye toward the target. Effect sizes were large, with Cohen's -values ranging for reaction times (RTs) from 0.50 to 0.95. Analyzing RT distributions using the LATER (Linear Approach to Threshold with Ergodic Rate) model revealed that social inhibition of pro- and anti-saccades in the complex protocol was associated with a significant increase in the rate of rise. The present demonstration that the simple presence of a familiar peer can inhibit or facilitate saccades depending on task difficulty strengthens a growing body of evidence showing social modulations of eye movements and attention processes. The present lack of effect on visual search and continuous performance tasks contrasts with peer presence effects reported earlier using similar tasks, and future studies are needed to determine whether it is due to an intermediate level of difficulty maximizing individual variability. Together with an earlier study of the social inhibition of anti-saccades also using the LATER model, which showed an increase of the threshold, the present increase of the rate of rise suggests that peer presence can influence both the top-down and bottom-up attention-related processes guiding the decision to move the eyes.
Could LC-NE-Dependent Adjustment of Neural Gain Drive Functional Brain Network Reorganization?
The locus coeruleus-norepinephrine (LC-NE) system is thought to act at synaptic, cellular, microcircuit, and network levels to facilitate cognitive functions through at least two different processes, not mutually exclusive. Accordingly, as a reset signal, the LC-NE system could trigger brain network reorganizations in response to salient information in the environment and/or adjust the neural gain within its target regions to optimize behavioral responses. Here, we provide evidence of the co-occurrence of these two mechanisms at the whole-brain level, in resting-state conditions following a pharmacological stimulation of the LC-NE system. We propose that these two mechanisms are interdependent such that the LC-NE-dependent adjustment of the neural gain inferred from the clustering coefficient could drive functional brain network reorganizations through coherence in the gamma rhythm. Via the temporal dynamic of gamma-range band-limited power, the release of NE could adjust the neural gain, promoting interactions only within the neuronal populations whose amplitude envelopes are correlated, thus making it possible to reorganize neuronal ensembles, functional networks, and ultimately, behavioral responses. Thus, our proposal offers a unified framework integrating the putative influence of the LC-NE system on both local- and long-range adjustments of brain dynamics underlying behavioral flexibility.
Model-Observer Similarity, Error Modeling and Social Learning in Rhesus Macaques
Monkeys readily learn to discriminate between rewarded and unrewarded items or actions by observing their conspecifics. However, they do not systematically learn from humans. Understanding what makes human-to-monkey transmission of knowledge work or fail could help identify mediators and moderators of social learning that operate regardless of language or culture, and transcend inter-species differences. Do monkeys fail to learn when human models show a behavior too dissimilar from the animals' own, or when they show a faultless performance devoid of error? To address this question, six rhesus macaques trained to find which object within a pair concealed a food reward were successively tested with three models: a familiar conspecific, a 'stimulus-enhancing' human actively drawing the animal's attention to one object of the pair without actually performing the task, and a 'monkey-like' human performing the task in the same way as the monkey model did. Reward was manipulated to ensure that all models showed equal proportions of errors and successes. The 'monkey-like' human model improved the animals' subsequent object discrimination learning as much as a conspecific did, whereas the 'stimulus-enhancing' human model tended on the contrary to retard learning. Modeling errors rather than successes optimized learning from the monkey and 'monkey-like' models, while exacerbating the adverse effect of the 'stimulus-enhancing' model. These findings identify error modeling as a moderator of social learning in monkeys that amplifies the models' influence, whether beneficial or detrimental. By contrast, model-observer similarity in behavior emerged as a mediator of social learning, that is, a prerequisite for a model to work in the first place. The latter finding suggests that, as preverbal infants, macaques need to perceive the model as 'like-me' and that, once this condition is fulfilled, any agent can become an effective model.
Developmental Trajectory of Anticipation: Insights from Sequential Comparative Judgments
Reaction time (RT) is a critical measure of performance, and studying its distribution at the group or individual level provides useful information on the cognitive processes or strategies used to perform a task. In a previous study measuring RT in children and adults asked to compare two successive stimuli (quantities or words), we discovered that the group RT distribution was bimodal, with some subjects responding with a mean RT of around 1100 ms and others with a mean RT of around 500 ms. This bimodal distribution suggested two distinct response strategies, one reactive, the other anticipatory. In the present study, we tested whether subjects’ segregation into fast and slow responders (1) extended to other sequential comparative judgments (2) evolved from age 8 to adulthood, (3) could be linked to anticipation as assessed using computer modeling (4) stemmed from individual-specific strategies amenable to instruction. To test the first three predictions, we conducted a distributional and theoretical analysis of the RT of 158 subjects tested earlier using four different sequential comparative judgment tasks (numerosity, phonological, multiplication, subtraction). Group RT distributions were bimodal in all tasks, with the two strategies differing in speed and sometimes accuracy too. The fast strategy, which was rare or absent in 8- to 9-year-olds, steadily increased through childhood. Its frequency in adolescence remained, however, lower than in adulthood. A mixture model confirmed this developmental evolution, while a diffusion model corroborated the idea that the difference between the two strategies concerns anticipatory processes preceding decision processes. To test the fourth prediction, we conducted an online experiment where 236 participants made numerosity comparisons before and after an instruction favoring either reactive or anticipatory responses. The results provide out-of-the-lab evidence of the bimodal RT distribution associated with sequential comparisons and demonstrated that the proportions of fast vs. slow responders can be modulated simply by asking subjects to anticipate or not the future result of the comparison. Although anticipation of the future is as important for cognition as memory of the past, its evolution after the first year of life is much more poorly known. The present study is a step toward meeting this challenge. It also illustrates how analyzing individual RT distributions in addition to group RT distributions and using computational models can improve the assessment of decision making cognitive processes.
Peer Presence Effect on Numerosity and Phonological Comparisons in 4th Graders: When Working with a SchoolMate Makes Children More Adult-like
Little is known about how peers’ mere presence may, in itself, affect academic learning and achievement. The present study addresses this issue by exploring whether and how the presence of a familiar peer affects performance in a task assessing basic numeracy and literacy skills: numerosity and phonological comparisons. We tested 99 fourth-graders either alone or with a classmate. Ninety-seven college-aged young adults were also tested on the same task, either alone or with a familiar peer. Peer presence yielded a reaction time (RT) speedup in children, and this social facilitation was at least as important as that seen in adults. RT distribution analyses indicated that the presence of a familiar peer promotes the emergence of adult-like features in children. This included shorter and less variable reaction times (confirmed by an ex-Gaussian analysis), increased use of an optimal response strategy, and, based on Ratcliff’s diffusion model, speeded up nondecision (memory and/or motor) processes. Peer presence thus allowed children to at least narrow (for demanding phonological comparisons), and at best, virtually fill in (for unchallenging numerosity comparisons) the developmental gap separating them from adult levels of performance. These findings confirm the influence of peer presence on skills relevant to education and lay the groundwork for exploring how the brain mechanisms mediating this fundamental social influence evolve during development.
Advanced Parkinson's disease effect on goal-directed and habitual processes involved in visuomotor associative learning
The present behavioral study re-addresses the question of habit learning in Parkinson's disease (PD). Patients were early onset, non-demented, dopa-responsive, candidates for surgical treatment, similar to those we found earlier as suffering greater dopamine depletion in the putamen than in the caudate nucleus. The task was the same conditional associative learning task as that used previously in monkeys and healthy humans to unveil the striatum involvement in habit learning. Sixteen patients and 20 age- and education-matched healthy control subjects learned sets of 3 visuo-motor associations between complex patterns and joystick displacements during two testing sessions separated by a few hours. We distinguished errors preceding vs. following the first correct response to compare patients' performance during the earliest phase of learning dominated by goal-directed actions with that observed later on, when responses start to become habitual. The disease significantly retarded both learning phases, especially in patients under 60 years of age. However, only the late phase deficit was disease severity-dependent and persisted on the second testing session. These findings provide the first corroboration in Parkinson patients of two ideas well-established in the animal literature. The first is the idea that associating visual stimuli to motor acts is a form of habit learning that engages the striatum. It is confirmed here by the global impairment in visuo-motor learning induced by PD. The second idea is that goal-directed behaviors are predominantly caudate-dependent whereas habitual responses are primarily putamen-dependent. At the advanced PD stages tested here, dopamine depletion is greater in the putamen than in the caudate nucleus. Accordingly, the late phase of learning corresponding to the emergence of habitual responses was more vulnerable to the disease than the early phase dominated by goal-directed actions.
Social Learning as a Way to Overcome Choice-Induced Preferences? Insights from Humans and Rhesus Macaques
Much theoretical attention is currently devoted to social learning. Yet, empirical studies formally comparing its effectiveness relative to individual learning are rare. Here, we focus on free choice, which is at the heart of individual reward-based learning, but absent in social learning. Choosing among two equally valued options is known to create a preference for the selected option in both humans and monkeys. We thus surmised that social learning should be more helpful when choice-induced preferences retard individual learning than when they optimize it. To test this prediction, the same task requiring to find which among two items concealed a reward was applied to rhesus macaques and humans. The initial trial was individual or social, rewarded or unrewarded. Learning was assessed on the second trial. Choice-induced preference strongly affected individual learning. Monkeys and humans performed much more poorly after an initial negative choice than after an initial positive choice. Comparison with social learning verified our prediction. For negative outcome, social learning surpassed or at least equaled individual learning in all subjects. For positive outcome, the predicted superiority of individual learning did occur in a majority of subjects (5/6 monkeys and 6/12 humans). A minority kept learning better socially though, perhaps due to a more dominant/aggressive attitude toward peers. Poor learning from errors due to over-valuation of personal choices is among the decision-making biases shared by humans and animals. The present study suggests that choice-immune social learning may help curbing this potentially harmful tendency. Learning from successes is an easier path. The present data suggest that whether one tends to walk it alone or with a peer's help might depend on the social dynamics within the actor/observer dyad.
Neural bases of social facilitation and inhibition: how peer presence affects elementary eye movements
Social Facilitation/Inhibition (SFI) refers to how others' presence influences task performance positively or negatively. Our previous study revealed that peer presence modulated saccadic eye movements, a fundamental sensorimotor activity. Pro-and antisaccades were either facilitated or inhibited depending on trial block complexity (Tricoche et al., 2020). In the present fMRI study, we adapted our paradigm to investigate the neural basis of SFI on saccades. Considering inter-and intra-individual variabilities, we evaluated the shared and distinct neural patterns between social facilitation and inhibition. We predicted an involvement of the saccade-related and attention networks, alongside the Theory-of-Mind (ToM) network, with opposite activity changes between facilitation and inhibition. Results confirmed peer presence modulation in fronto-parietal areas related to saccades and attention, in opposite directions for facilitation and inhibition. Additionally, the ventral attention network was modulated during inhibition. Default mode regions, including ToM areas, were also modulated. Finally, pupil size, often linked to arousal, increased with Downloaded from https://academic.oup.com/scan/advance-article/doi/10.1093/scan/nsae079/7882869 by guest on 21 November 2024 Saccades, peer presence and neural bases peers and correlated with dorsal attention regions and anterior insula activities. These results suggest that SFI engages task-specific and domain-general networks, modulated differently based on observed social effect. Attention network seemed to play a central role at both basic (linked to arousal or vigilance) and cognitive control levels.
Differential roles of caudate nucleus and putamen during instrumental learning
The dorsal striatum is crucial for the acquisition and consolidation of instrumental behaviour, but the underlying computations and internal dynamics remain elusive. To address this issue, we combined a model of key computations supporting decision-making during instrumental learning with human behavioural and functional magnetic resonance imaging (fMRI) data. The results showed that the associative and sensorimotor dorsal striatum host complementary computations that, we suggest, may differentially support goal-directed and habitual processes. The anterior caudate nucleus integrates information about performance and cognitive control demands, whereas the putamen tracks how likely the conditioning stimuli lead to correct response. Contrary to current models, the putamen is recruited during initial acquisition. As the exploratory phase proceeds, the relative contribution of the caudate nucleus becomes dominant over the putamen. During early consolidation, caudate nucleus and putamen settle to asymptotic values and share control. We then investigated how dorsal striatal computations may affect decision-making. We found that portion of reaction times' variance parallels the combined cost associated with the dorsal striatal computations. Overall, our findings provide a deeper insight into the functional heterogeneity within the dorsal striatum and suggest that the dynamic interplay between caudate nucleus and putamen, rather than their serial recruitment, underlies the acquisition and early consolidation of instrumental behaviours. ► Neural substrates of decision-making processes during learning in the dorsal striatum. ► Caudate nucleus integrates information on performance and cognitive control demands. ► Putamen tracks how likely the conditioning stimuli lead to correct response. ► Dynamical interplay between caudate nucleus and putamen during learning. ► Caudate nucleus and putamen activity modulates reaction times during learning.