Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
420
result(s) for
"Meuth, Sven G."
Sort by:
Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis
by
Hartlehnert, Maike
,
Heming, Michael
,
Kuhlmann, Tanja
in
49/91
,
631/250/1619/554/1898/1270
,
631/250/38
2020
Cerebrospinal fluid (CSF) protects the central nervous system (CNS) and analyzing CSF aids the diagnosis of CNS diseases, but our understanding of CSF leukocytes remains superficial. Here, using single cell transcriptomics, we identify a specific location-associated composition and transcriptome of CSF leukocytes. Multiple sclerosis (MS) – an autoimmune disease of the CNS – increases transcriptional diversity in blood, but increases cell type diversity in CSF including a higher abundance of cytotoxic phenotype T helper cells. An analytical approach, named cell set enrichment analysis (CSEA) identifies a cluster-independent increase of follicular (TFH) cells potentially driving the known expansion of B lineage cells in the CSF in MS. In mice, TFH cells accordingly promote B cell infiltration into the CNS and the severity of MS animal models. Immune mechanisms in MS are thus highly compartmentalized and indicate ongoing local T/B cell interaction.
Here the authors provide a single-cell characterization of cerebrospinal fluid and blood of newly diagnosed multiple sclerosis (MS) patients, revealing altered composition of lymphocyte and monocyte subsets, validated by other methods including the interrogation of the TFH subset in mouse models of MS.
Journal Article
The Coagulation Factors Fibrinogen, Thrombin, and Factor XII in Inflammatory Disorders—A Systematic Review
by
Eichler, Susann
,
Chavakis, Triantafyllos
,
Wiendl, Heinz
in
Chemical bonds
,
Chemokines
,
Chronic infection
2018
The interaction of coagulation factors has been shown to go beyond their traditional roles in hemostasis and to affect the development of inflammatory diseases. Key molecular players, such as fibrinogen, thrombin, or factor XII have been mechanistically and epidemiologically linked to inflammatory disorders like multiple sclerosis (MS), rheumatoid arthritis (RA), and colitis.
To systematically review the evidence for a role of coagulation factors, especially factor XII, fibrinogen, and thrombin in inflammatory disorders like MS, RA, and bowel disorders.
A systematic literature search was done in the PubMed database to identify studies about coagulation factors in inflammatory diseases. Original articles and reviews investigating the role of the kallikrein-kinin and the coagulation system in mouse and humans were included.
We identified 43 animal studies dealing with inflammatory disorders and factors of the kallikrein-kinin or the coagulation system. Different immunological influences are described and novel molecular mechanisms linking coagulation and inflammation are reported.
A number of studies have highlighted coagulation factors to tip the balance between hemostasis and thrombosis and between protection from infection and extensive inflammation. To optimize the treatment of chronic inflammatory disorders by these factors, further studies are necessary.
Journal Article
Translational value of choroid plexus imaging for tracking neuroinflammation in mice and humans
by
Groppa, Sergiu
,
Gonzalez-Escamilla, Gabriel
,
Müntefering, Thomas
in
Adult
,
Animal models
,
Animals
2021
Neuroinflammation is a pathophysiological hallmark of multiple sclerosis and has a close mechanistic link to neurodegeneration. Although this link is potentially targetable, robust translatable models to reliably quantify and track neuroinflammation in both mice and humans are lacking. The choroid plexus (ChP) plays a pivotal role in regulating the trafficking of immune cells from the brain parenchyma into the cerebrospinal fluid (CSF) and has recently attracted attention as a key structure in the initiation of inflammatory brain responses. In a translational framework, we here address the integrity and multidimensional characteristics of the ChP under inflammatory conditions and question whether ChP volumes could act as an interspecies marker of neuroinflammation that closely interrelates with functional impairment. Therefore, we explore ChP characteristics in neuroinflammation in patients with multiple sclerosis and in two experimental mouse models, cuprizone diet-related demyelination and experimental autoimmune encephalomyelitis. We demonstrate that ChP enlargement—reconstructed from MRI—is highly associated with acute disease activity, both in the studied mouse models and in humans. A close dependency of ChP integrity and molecular signatures of neuroinflammation is shown in the performed transcriptomic analyses. Moreover, pharmacological modulation of the blood–CSF barrier with natalizumab prevents an increase of the ChP volume. ChP enlargement is strongly linked to emerging functional impairment as depicted in the mouse models and in multiple sclerosis patients. Our findings identify ChP characteristics as robust and translatable hallmarks of acute and ongoing neuroinflammatory activity in mice and humans that could serve as a promising interspecies marker for translational and reverse-translational approaches.
Journal Article
Generating microglia from human pluripotent stem cells: novel in vitro models for the study of neurodegeneration
by
Pawlowski, Matthias
,
Wiendl, Heinz
,
Meuth, Sven G.
in
Aggregates
,
Analysis
,
Biomedical and Life Sciences
2019
Microglia play an essential role for central nervous system (CNS) development and homeostasis and have been implicated in the onset, progression, and clearance of numerous diseases affecting the CNS. Previous in vitro research on human microglia was restricted to post-mortem brain tissue-derived microglia, with limited availability and lack of scalability. Recently, the first protocols for the generation of microglia from human pluripotent stem cells have become available, thus enabling the implementation of powerful platforms for disease modeling, drug testing, and studies on cell transplantation. Here we give a detailed and comprehensive overview of the protocols available for generating microglia from human pluripotent stem cells, highlighting the advantages, drawbacks, and operability and placing them into the context of current knowledge of human embryonic development. We review novel insights into microglia biology and the role of microglia in neurological diseases as drawn from the new methods and provide an outlook for future lines of research involving human pluripotent stem cell-derived microglia.
Journal Article
Evidence from ClinicalTrials.gov on the growth of Digital Health Technologies in neurology trials
by
Gieseler, Pauline
,
Meuth, Sven G.
,
Stern, Ariel D.
in
692/308/2779/109
,
692/617
,
Alzheimer's disease
2023
Digital Health Technologies (DHTs) such as connected sensors offer particular promise for improving data collection and patient empowerment in neurology research and care. This study analyzed the recent evolution of the use of DHTs in trials registered on
ClinicalTrials.gov
for four chronic neurological disorders: epilepsy, multiple sclerosis, Alzheimer’s, and Parkinson’s disease. We document growth in the collection of both more established digital measures (e.g., motor function) and more novel digital measures (e.g., speech) over recent years, highlighting contexts of use and key trends.
Journal Article
Post-Stroke Inhibition of Induced NADPH Oxidase Type 4 Prevents Oxidative Stress and Neurodegeneration
2010
Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 (Nox4(-/-)) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox4(-/-) mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy.
Journal Article
LFA-1: A potential key player in microglia-mediated neuroprotection against oxygen-glucose deprivation in vitro
2025
For the last 38 years, all neuroprotective agents for patients with ischemic stroke have failed in clinical trials. The innate immune system, particularly microglia, is a much-discussed target for neuroprotective agents. Promising results for neuroprotection by inhibition of integrins with drugs such as natalizumab in animal stroke models have not been translated into clinical practice. Our present study reveals the relevance of a β2 integrin, lymphocyte function-associated antigen-1 (LFA-1), as a potential key player in protecting neuronal cell death after oxygen-glucose deprivation in organotypic hippocampal cell cultures. In addition, we identified microglial cells as effector cells for LFA-1-mediated neuroprotection. The counterpart of LFA-1 on microglia is unclear, but we show strong expression of ICAM-5 in hippocampal neurons, suggesting a critical role for direct crosstalk between microglia and neurons for neuronal survival under oxygen-glucose deprivation. The enigma of neuroprotection after ischemic stroke remains to be solved, and our findings highlight the continuing importance and lack of understanding of integrin-mediated pathways after ischemic stroke and the need for further intensive research.
Journal Article
Infectious mononucleosis is associated with an increased incidence of multiple sclerosis: Results from a cohort study of 32,116 outpatients in Germany
by
Loosen, Sven H.
,
Luedde, Tom
,
Kostev, Karel
in
Autoimmune diseases
,
Cohort analysis
,
Diabetes
2022
BackgroundThe pathogenesis of multiple sclerosis (MS) has not yet been fully uncovered. There is increasing evidence that Epstein-Barr-Virus (EBV) infection, which affects over 90% of people during life and causes infectious mononucleosis, leads to an increased incidence of MS, and thus may play a crucial role in the pathophysiology of the disease.MethodsUsing the Disease Analyzer database (IQVIA) featuring diagnoses as well as basic medical and demographic data of outpatients from general practices in Germany, we identified a total of 16,058 patients with infectious mononucleosis that were matched to a cohort of equal size without infectious mononucleosis based on patients’ age, sex, index year and yearly consultation frequency. Incidence of MS was compared within a 10-year follow-up period.ResultsWithin 10 years from the index date, the incidence of MS was 22.6 cases per 100,000 person-years among patient with infectious mononucleosis but only 11.9 cases per 100,000 person-years among individuals without infectious mononucleosis. In regression analysis, infectious mononucleosis was significantly associated with the incidence of MS (HR: 1.86, 95% CI: 1.09-3.16). Subgroup analysis revealed the strongest association between infectious mononucleosis and MS in the age group between 14 and 20 years (HR: 3.52, 95% CI: 1.00-12.37) as well as a stronger association in men compared to women.ConclusionInfectious mononucleosis is associated with an increased incidence of MS especially in younger individuals. Our data support the growing evidence of a decisive involvement of EBV in the currently unknown pathophysiology of MS and should trigger further research efforts to better understand and potentially prevent cases of this disabling disease in future.
Journal Article
The role of the ZEB1–neuroinflammation axis in CNS disorders
by
Kahlert, Ulf Dietrich
,
Poonaki, Elham
,
Meuth, Sven G.
in
Alzheimer's disease
,
Angiogenesis
,
Apoptosis
2022
Zinc finger E-box binding homeobox 1 (ZEB1) is a master modulator of the epithelial–mesenchymal transition (EMT), a process whereby epithelial cells undergo a series of molecular changes and express certain characteristics of mesenchymal cells. ZEB1, in association with other EMT transcription factors, promotes neuroinflammation through changes in the production of inflammatory mediators, the morphology and function of immune cells, and multiple signaling pathways that mediate the inflammatory response. The ZEB1–neuroinflammation axis plays a pivotal role in the pathogenesis of different CNS disorders, such as brain tumors, multiple sclerosis, cerebrovascular diseases, and neuropathic pain, by promoting tumor cell proliferation and invasiveness, formation of the hostile inflammatory micromilieu surrounding neuronal tissues, dysfunction of microglia and astrocytes, impairment of angiogenesis, and dysfunction of the blood–brain barrier. Future studies are needed to elucidate whether the ZEB1–neuroinflammation axis could serve as a diagnostic, prognostic, and/or therapeutic target for CNS disorders.
Journal Article
Triage Performance Across Large Language Models, ChatGPT, and Untrained Doctors in Emergency Medicine: Comparative Study
by
Huntemann, Niklas
,
Mehsin, Mohammed
,
Seifert, Antonia
in
Comparative analysis
,
Computational linguistics
,
Emergency medicine
2024
Large language models (LLMs) have demonstrated impressive performances in various medical domains, prompting an exploration of their potential utility within the high-demand setting of emergency department (ED) triage. This study evaluated the triage proficiency of different LLMs and ChatGPT, an LLM-based chatbot, compared to professionally trained ED staff and untrained personnel. We further explored whether LLM responses could guide untrained staff in effective triage.
This study aimed to assess the efficacy of LLMs and the associated product ChatGPT in ED triage compared to personnel of varying training status and to investigate if the models' responses can enhance the triage proficiency of untrained personnel.
A total of 124 anonymized case vignettes were triaged by untrained doctors; different versions of currently available LLMs; ChatGPT; and professionally trained raters, who subsequently agreed on a consensus set according to the Manchester Triage System (MTS). The prototypical vignettes were adapted from cases at a tertiary ED in Germany. The main outcome was the level of agreement between raters' MTS level assignments, measured via quadratic-weighted Cohen κ. The extent of over- and undertriage was also determined. Notably, instances of ChatGPT were prompted using zero-shot approaches without extensive background information on the MTS. The tested LLMs included raw GPT-4, Llama 3 70B, Gemini 1.5, and Mixtral 8x7b.
GPT-4-based ChatGPT and untrained doctors showed substantial agreement with the consensus triage of professional raters (κ=mean 0.67, SD 0.037 and κ=mean 0.68, SD 0.056, respectively), significantly exceeding the performance of GPT-3.5-based ChatGPT (κ=mean 0.54, SD 0.024; P<.001). When untrained doctors used this LLM for second-opinion triage, there was a slight but statistically insignificant performance increase (κ=mean 0.70, SD 0.047; P=.97). Other tested LLMs performed similar to or worse than GPT-4-based ChatGPT or showed odd triaging behavior with the used parameters. LLMs and ChatGPT models tended toward overtriage, whereas untrained doctors undertriaged.
While LLMs and the LLM-based product ChatGPT do not yet match professionally trained raters, their best models' triage proficiency equals that of untrained ED doctors. In its current form, LLMs or ChatGPT thus did not demonstrate gold-standard performance in ED triage and, in the setting of this study, failed to significantly improve untrained doctors' triage when used as decision support. Notable performance enhancements in newer LLM versions over older ones hint at future improvements with further technological development and specific training.
Journal Article