Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
31 result(s) for "Meyers, Jordan M."
Sort by:
The proximal proteome of 17 SARS-CoV-2 proteins links to disrupted antiviral signaling and host translation
Viral proteins localize within subcellular compartments to subvert host machinery and promote pathogenesis. To study SARS-CoV-2 biology, we generated an atlas of 2422 human proteins vicinal to 17 SARS-CoV-2 viral proteins using proximity proteomics. This identified viral proteins at specific intracellular locations, such as association of accessary proteins with intracellular membranes, and projected SARS-CoV-2 impacts on innate immune signaling, ER-Golgi transport, and protein translation. It identified viral protein adjacency to specific host proteins whose regulatory variants are linked to COVID-19 severity, including the TRIM4 interferon signaling regulator which was found proximal to the SARS-CoV-2 M protein. Viral NSP1 protein adjacency to the EIF3 complex was associated with inhibited host protein translation whereas ORF6 localization with MAVS was associated with inhibited RIG-I 2CARD-mediated IFNB1 promoter activation. Quantitative proteomics identified candidate host targets for the NSP5 protease, with specific functional cleavage sequences in host proteins CWC22 and FANCD2. This data resource identifies host factors proximal to viral proteins in living human cells and nominates pathogenic mechanisms employed by SARS-CoV-2.
Cutaneous HPV8 and MmuPV1 E6 Proteins Target the NOTCH and TGF-β Tumor Suppressors to Inhibit Differentiation and Sustain Keratinocyte Proliferation
Cutaneous beta-papillomaviruses are associated with non-melanoma skin cancers that arise in patients who suffer from a rare genetic disorder, Epidermodysplasia verruciformis (EV) or after immunosuppression following organ transplantation. Recent studies have shown that the E6 proteins of the cancer associated beta human papillomavirus (HPV) 5 and HPV8 inhibit NOTCH and TGF-β signaling. However, it is unclear whether disruption of these pathways may contribute to cutaneous HPV pathogenesis and carcinogenesis. A recently identified papillomavirus, MmuPV1, infects laboratory mouse strains and causes cutaneous skin warts that can progress to squamous cell carcinoma. To determine whether MmuPV1 may be an appropriate model to mechanistically dissect the molecular contributions of cutaneous HPV infections to skin carcinogenesis, we investigated whether MmuPV1 E6 shares biological and biochemical activities with HPV8 E6. We report that the HPV8 and MmuPV1 E6 proteins share the ability to bind to the MAML1 and SMAD2/SMAD3 transcriptional cofactors of NOTCH and TGF-beta signaling, respectively. Moreover, we demonstrate that these cutaneous papillomavirus E6 proteins inhibit these two tumor suppressor pathways and that this ability is linked to delayed differentiation and sustained proliferation of differentiating keratinocytes. Furthermore, we demonstrate that the ability of MmuPV1 E6 to bind MAML1 is necessary for papilloma formation in experimentally infected mice. Our results, therefore, suggest that experimental MmuPV1 infection in mice will be a robust and useful experimental system to model key aspects of cutaneous HPV infection, pathogenesis and carcinogenesis.
Disease-linked regulatory DNA variants and homeostatic transcription factors in epidermis
Identifying noncoding single nucleotide variants ( SNVs ) in regulatory DNA linked to polygenic disease risk, the transcription factors ( TFs ) they bind, and the genes they dysregulate is a goal in polygenic disease research. Here, we use massively parallel reporter analysis of 3451 SNVs linked to risk for polygenic skin diseases with disrupted epidermal homeostasis to identify 355 differentially active SNVs ( daSNVs ). daSNV target gene analysis, combined with daSNV editing, underscored dysregulated epidermal differentiation as a shared pathomechanism. CRISPR knockout screens of 1772 human TFs revealed 123 TFs essential for epidermal homeostasis, highlighting ZNF217 and CXXC1. Population sampling CUT&RUN of 27 homeostatic TFs identified allele-specific DNA binding ( ASB ) differences at daSNVs enriched near epidermal homeostasis and monogenic skin disease genes, with notable representation of SP/KLF and AP-1/2 TFs. High TF-occupancy promoters were “buffered” against ASB. This resource implicates dysregulated binding of specific homeostatic TF families in risk for diverse polygenic skin diseases. Here the authors use a range of approaches to examine the interplay between genetic variants linked to risk for polygenic skin diseases and transcription factors (TFs) important for skin homeostasis. The findings implicate dysregulated binding of specific TF families in risk for diverse skin diseases.
Sp100 Provides Intrinsic Immunity against Human Papillomavirus Infection
Most DNA viruses associate with, and reorganize, nuclear domain 10 (ND10) bodies upon entry into the host nucleus. In this study, we examine the roles of the ND10 components PML, Sp100, and Daxx in the establishment of human papillomavirus type 18 (HPV18) infection of primary human keratinocytes. HPV18 DNA or HPV18 quasivirus was introduced into primary human keratinocytes depleted of each ND10 protein by small interfering RNA technology, and genome establishment was determined by using a quantitative immortalization assay and measurements of viral transcription and DNA replication. Keratinocyte depletion of Sp100 resulted in a substantial increase in the number of HPV18-immortalized colonies and a corresponding increase in viral transcription and DNA replication. However, Sp100 repressed viral transcription and replication only during the initial stages of viral establishment, suggesting that Sp100 acts as a repressor of incoming HPV DNA. IMPORTANCE The intrinsic immune system provides a first-line defense against invading pathogens. Host cells contain nuclear bodies (ND10) that are important for antiviral defense, yet many DNA viruses localize here upon cell entry. However, viruses also disrupt, reorganize, and modify individual components of the bodies. In this study, we show that one of the ND10 components, Sp100, limits the infection of human skin cells by human papillomavirus (HPV). HPVs are important pathogens that cause many types of infection of the cutaneous and mucosal epithelium and are the causative agents of several human cancers. Understanding how host cells counteract HPV infection could provide insight into antimicrobial therapies that could limit initial infection. The intrinsic immune system provides a first-line defense against invading pathogens. Host cells contain nuclear bodies (ND10) that are important for antiviral defense, yet many DNA viruses localize here upon cell entry. However, viruses also disrupt, reorganize, and modify individual components of the bodies. In this study, we show that one of the ND10 components, Sp100, limits the infection of human skin cells by human papillomavirus (HPV). HPVs are important pathogens that cause many types of infection of the cutaneous and mucosal epithelium and are the causative agents of several human cancers. Understanding how host cells counteract HPV infection could provide insight into antimicrobial therapies that could limit initial infection.
Cutaneous HPV8 and MmuPV1 E6 Proteins Target the NOTCH and TGF-beta Tumor Suppressors to Inhibit Differentiation and Sustain Keratinocyte Proliferation
Cutaneous beta-papillomaviruses are associated with non-melanoma skin cancers that arise in patients who suffer from a rare genetic disorder, Epidermodysplasia verruciformis (EV) or after immunosuppression following organ transplantation. Recent studies have shown that the E6 proteins of the cancer associated beta human papillomavirus (HPV) 5 and HPV8 inhibit NOTCH and TGF-[Beta] signaling. However, it is unclear whether disruption of these pathways may contribute to cutaneous HPV pathogenesis and carcinogenesis. A recently identified papillomavirus, MmuPV1, infects laboratory mouse strains and causes cutaneous skin warts that can progress to squamous cell carcinoma. To determine whether MmuPV1 may be an appropriate model to mechanistically dissect the molecular contributions of cutaneous HPV infections to skin carcinogenesis, we investigated whether MmuPV1 E6 shares biological and biochemical activities with HPV8 E6. We report that the HPV8 and MmuPV1 E6 proteins share the ability to bind to the MAML1 and SMAD2/SMAD3 transcriptional cofactors of NOTCH and TGF-beta signaling, respectively. Moreover, we demonstrate that these cutaneous papillomavirus E6 proteins inhibit these two tumor suppressor pathways and that this ability is linked to delayed differentiation and sustained proliferation of differentiating keratinocytes. Furthermore, we demonstrate that the ability of MmuPV1 E6 to bind MAML1 is necessary for papilloma formation in experimentally infected mice. Our results, therefore, suggest that experimental MmuPV1 infection in mice will be a robust and useful experimental system to model key aspects of cutaneous HPV infection, pathogenesis and carcinogenesis.
In vivo CRISPRi screen identified lncRNA portfolio crucial for cutaneous squamous cell carcinoma tumor growth
Cutaneous squamous cell carcinoma (cSCC) accounts for 20% of all skin cancer deaths globally, making it the second-highest subtype of skin cancer. The prevalence of cSCC in humans, as well as the poor capacity for an efficient prognosis, highlights the need to uncover alternative actors and mechanisms at the foundation of skin cancer development. Significant advances have been made to better understand some key factors in cSCC progression. However, little is known about the role of noncoding RNAs, particularly of a specific category called long noncoding RNA (lncRNA). By performing pseudobulk analysis of single-cell sequencing data from normal and cSCC human skin tissues, we determined a global portfolio of lncRNAs specifically expressed in keratinocyte subpopulations. Integration of CRISPR interference screens in vitro and the xenograft model identified several lncRNAs impacting the growth of cSCC cancer lines both in vitro and in vivo. Among these, we further validated LINC00704 and LINC01116 as proliferation-regulating lncRNAs in cSCC lines and potential biomarkers of cSCC progression. Taken together, our study provides a comprehensive signature of lncRNAs with roles in regulating cSCC progression.
Disease-Linked Regulatory DNA Variants and Homeostatic Transcription Factors in Epidermis
Identifying noncoding single nucleotide variants ( SNVs ) in regulatory DNA linked to polygenic disease risk, the transcription factors ( TFs ) they bind, and the target genes they dysregulate is a goal in polygenic disease research. Massively parallel reporter gene analysis ( MPRA ) of 3,451 SNVs linked to risk for polygenic skin diseases characterized by disrupted epidermal homeostasis identified 355 differentially active SNVs ( daSNVs ). daSNV target gene analysis, combined with daSNV editing, underscored dysregulated epidermal differentiation as a pathomechanism shared across common polygenic skin diseases. CRISPR knockout screens of 1772 human TFs revealed 108 TFs essential for epidermal progenitor differentiation, uncovering novel roles for ZNF217, CXXC1, FOXJ2, IRX2 and NRF1. Population sampling CUT&RUN of 27 homeostatic TFs identified allele-specific DNA binding ( ASB ) differences at daSNVs enriched near epidermal homeostasis and monogenic skin disease genes, with notable representation of SP/KLF and AP-1/2 TFs. This resource implicates dysregulated differentiation in risk for diverse polygenic skin diseases.
The proximal proteome of 17 SARS-CoV-2 proteins links to disrupted antiviral signaling and host translation
Abstract Viral proteins localize within subcellular compartments to subvert host machinery and promote pathogenesis. To study SARS-CoV-2 biology, we generated an atlas of 2422 human proteins vicinal to 17 SARS-CoV-2 viral proteins using proximity proteomics. This identified viral proteins at specific intracellular locations, such as association of accessary proteins with intracellular membranes, and projected SARS-CoV-2 impacts on innate immune signaling, ER-Golgi transport, and protein translation. It identified viral protein adjacency to specific host proteins whose regulatory variants are linked to COVID-19 severity, including the TRIM4 interferon signaling regulator which was found proximal to the SARS-CoV-2 M protein. Viral NSP1 protein adjacency to the EIF3 complex was associated with inhibited host protein translation whereas ORF6 localization with MAVS was associated with inhibited RIG-I 2CARD-mediated IFNB1 promoter activation. Quantitative proteomics identified candidate host targets for the NSP5 protease, with specific functional cleavage sequences in host proteins CWC22 and FANCD2. This data resource identifies host factors proximal to viral proteins in living human cells and nominates pathogenic mechanisms employed by SARS-CoV-2. Author Summary SARS-CoV-2 is the latest pathogenic coronavirus to emerge as a public health threat. We create a database of proximal host proteins to 17 SARS-CoV-2 viral proteins. We validate that NSP1 is proximal to the EIF3 translation initiation complex and is a potent inhibitor of translation. We also identify ORF6 antagonism of RNA-mediate innate immune signaling. We produce a database of potential host targets of the viral protease NSP5, and create a fluorescence-based assay to screen cleavage of peptide sequences. We believe that this data will be useful for identifying roles for many of the uncharacterized SARS-CoV-2 proteins and provide insights into the pathogenicity of new or emerging coronaviruses.
Computational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cells
CERES is a new computational method to estimate gene-dependency levels from CRISPR–Cas9 essentiality screens while accounting for copy number effects and variable sgRNA activity. Applying CERES to new genome-scale CRISPR–Cas9 essentiality screen data from 342 cancer cell lines and other published data sets shows that CERES decreases false-positive results and provides consistent estimates of sgRNA activity. The CRISPR–Cas9 system has revolutionized gene editing both at single genes and in multiplexed loss-of-function screens, thus enabling precise genome-scale identification of genes essential for proliferation and survival of cancer cells 1 , 2 . However, previous studies have reported that a gene-independent antiproliferative effect of Cas9-mediated DNA cleavage confounds such measurement of genetic dependency, thereby leading to false-positive results in copy number–amplified regions 3 , 4 . We developed CERES, a computational method to estimate gene-dependency levels from CRISPR–Cas9 essentiality screens while accounting for the copy number–specific effect. In our efforts to define a cancer dependency map, we performed genome-scale CRISPR–Cas9 essentiality screens across 342 cancer cell lines and applied CERES to this data set. We found that CERES decreased false-positive results and estimated sgRNA activity for both this data set and previously published screens performed with different sgRNA libraries. We further demonstrate the utility of this collection of screens, after CERES correction, for identifying cancer-type-specific vulnerabilities.