Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
108 result(s) for "Meyts, Isabelle"
Sort by:
Deficiency of Adenosine Deaminase 2 (DADA2): Updates on the Phenotype, Genetics, Pathogenesis, and Treatment
Deficiency of ADA2 (DADA2) is the first molecularly described monogenic vasculitis syndrome. DADA2 is caused by biallelic hypomorphic mutations in the ADA2 gene that encodes the adenosine deaminase 2 (ADA2) protein. Over 60 disease-associated mutations have been identified in all domains of ADA2 affecting the catalytic activity, protein dimerization, and secretion. Vasculopathy ranging from livedo reticularis to polyarteritis nodosa (PAN) and life-threatening ischemic and/or hemorrhagic stroke dominate the clinical features of DADA2. Vasculitis and inflammation can affect many organs, explaining the intestinal, hepatological, and renal manifestations. DADA2 should be primarily considered in patients with early-onset fevers, rashes, and strokes even in the absence of positive family history. Hematological manifestations include most commonly hypogammaglobulinemia, although pure red cell aplasia (PRCA), immune thrombocytopenia, and neutropenia have been increasingly reported. Thus, DADA2 may unify a variety of syndromes previously not thought to be related. The first-line treatment consists of TNF-inhibitors and is effective in controlling inflammation and in preserving vascular integrity. Hematopoietic stem cell transplantation (HSCT) has been successful in a group of patients presenting with hematological manifestations. ADA2 is highly expressed in myeloid cells and plays a role in the differentiation of macrophages; however, its function is still largely undetermined. Deficiency of ADA2 has been linked to an imbalance in differentiation of monocytes towards proinflammatory M1 macrophages. Future research on the function of ADA2 and on the pathophysiology of DADA2 will improve our understanding of the condition and promote early diagnosis and targeted treatment.
Oncostatin M silence and neopeptide: the value of exploring patients with rare inherited bone marrow failure
Inherited bone marrow failure syndromes (IBMFSs) encompass a diverse group of hematological disorders characterized by a progressive single-lineage cytopenia or pancytopenia. Despite their heterogeneity, these syndromes often result from genetic errors affecting key biological mechanisms, including telomere maintenance, DNA repair and chromosomal stability, and ribosome assembly, generally leading to accelerated apoptosis of hematopoietic cells. Nevertheless, a genetic diagnosis remains elusive in more than half of the cases. The increased risk of myelodysplastic syndrome (MDS), acute leukemia, and solid tumors associated with IBMFS frequently prompts early hematopoietic stem cell transplantation (HSCT). In this issue of the JCI, Garrigue, Kermasson, and colleagues identified a homozygous variant in Oncostatin M (OSM) in 3 children from a consanguineous family presenting with IBMFS characterized by profound anemia, thrombocytopenia, and neutropenia. The findings suggest that the loss-of-function OSM variant affected hematopoietic stem cell function through changes to the bone marrow microenvironment (BMM).
The 2022 Update of IUIS Phenotypical Classification for Human Inborn Errors of Immunity
Abstract The International Union of Immunological Societies (IUIS) expert committee (EC) on Inborn Errors of Immunity (IEI) reports here the 2022 updated phenotypic classification, which accompanies and complements the most-recent genotypic classification. This phenotypic classification is aimed for clinicians at the bedside and focuses on clinical features and laboratory phenotypes of specific IEI. In this classification, 485 IEI underlying phenotypes as diverse as infection, malignancy, allergy, auto-immunity and auto-inflammation are described, including 55 novel monogenic defects and 1 autoimmune phenocopy. Therefore, all 485 diseases of the genetic classification are presented in this paper in the form of colored tables with essential clinical or immunological phenotype entries.
The Ever-Increasing Array of Novel Inborn Errors of Immunity: an Interim Update by the IUIS Committee
The most recent updated classification of inborn errors of immunity/primary immunodeficiencies, compiled by the International Union of Immunological Societies Expert Committee, was published in January 2020. Within days of completing this report, it was already out of date, evidenced by the frequent publication of genetic variants proposed to cause novel inborn errors of immunity. As the next formal report from the IUIS Expert Committee will not be published until 2022, we felt it important to provide the community with a brief update of recent contributions to the field of inborn errors of immunity. Herein, we highlight studies that have identified 26 additional monogenic gene defects that reach the threshold to represent novel causes of immune defects.
Recent advances in primary immunodeficiency: from molecular diagnosis to treatment version 1; peer review: 3 approved
The technological advances in diagnostics and therapy of primary immunodeficiency are progressing at a fast pace. This review examines recent developments in the field of inborn errors of immunity, from their definition to their treatment. We will summarize the challenges posed by the growth of next-generation sequencing in the clinical setting, touch briefly on the expansion of the concept of inborn errors of immunity beyond the classic immune system realm, and finally review current developments in targeted therapies, stem cell transplantation, and gene therapy.
Hematopoietic Cell Transplantation Cures Adenosine Deaminase 2 Deficiency: Report on 30 Patients
PurposeDeficiency of adenosine deaminase 2 (DADA2) is an inherited inborn error of immunity, characterized by autoinflammation (recurrent fever), vasculopathy (livedo racemosa, polyarteritis nodosa, lacunar ischemic strokes, and intracranial hemorrhages), immunodeficiency, lymphoproliferation, immune cytopenias, and bone marrow failure (BMF). Tumor necrosis factor (TNF-α) blockade is the treatment of choice for the vasculopathy, but often fails to reverse refractory cytopenia. We aimed to study the outcome of hematopoietic cell transplantation (HCT) in patients with DADA2.MethodsWe conducted a retrospective study on the outcome of HCT in patients with DADA2. The primary outcome was overall survival (OS).ResultsThirty DADA2 patients from 12 countries received a total of 38 HCTs. The indications for HCT were BMF, immune cytopenia, malignancy, or immunodeficiency. Median age at HCT was 9 years (range: 2–28 years). The conditioning regimens for the final transplants were myeloablative (n = 20), reduced intensity (n = 8), or non-myeloablative (n = 2). Donors were HLA-matched related (n = 4), HLA-matched unrelated (n = 16), HLA-haploidentical (n = 2), or HLA-mismatched unrelated (n = 8). After a median follow-up of 2 years (range: 0.5–16 years), 2-year OS was 97%, and 2-year GvHD-free relapse-free survival was 73%. The hematological and immunological phenotypes resolved, and there were no new vascular events. Plasma ADA2 enzyme activity normalized in 16/17 patients tested. Six patients required more than one HCT.ConclusionHCT was an effective treatment for DADA2, successfully reversing the refractory cytopenia, as well as the vasculopathy and immunodeficiency.Clinical ImplicationsHCT is a definitive cure for DADA2 with > 95% survival.
A Narrative Review of the Neurological Manifestations of Human Adenosine Deaminase 2 Deficiency
Deficiency of human adenosine deaminase type 2 (DADA2) is a complex systemic autoinflammatory disorder characterized by vasculopathy, immune dysregulation, and hematologic abnormalities. The most notable neurological manifestations of DADA2 are strokes that can manifest with various neurological symptoms and are potentially fatal. However, neurological presentations can be diverse. We here present a review of the neurological manifestations of DADA2 to increase clinical awareness of DADA2 as the underlying diagnosis. We reviewed all published cases of DADA2 from 1 January 2014 until 19 July 2022 found via PubMed. A total of 129 articles describing the clinical features of DADA2 were included in the analysis. Six hundred twenty-eight patients diagnosed with DADA2 were included in the review. 50.3% of patients had at least signs of one reported neurological event, which was the initial or sole manifestation in 5.7% and 0.6%, respectively. 77.5% of patients with neurological manifestations had at least signs of one cerebrovascular accident, with lacunar strokes being the most common and 35.9% of them having multiple stroke episodes. There is a remarkable predilection for the brain stem and deep gray matter, with 37.3% and 41.6% of ischemic strokes, respectively. Other neurological involvement included neuropathies, focal neurological deficits, ophthalmological findings, convulsions, and headaches. In summary, neurological manifestations affect a significant proportion of patients with DADA2, and the phenotype is broad. Neurological manifestations can be the first and single manifestation of DADA2. Therefore, stroke, encephalitis, posterior reversible encephalopathy syndrome, mononeuropathy and polyneuropathy, and Behçet’s disease-like presentations should prompt the neurologist to exclude DADA2, especially but not only in childhood.
Heterozygous mutations in the C-terminal domain of COPA underlie a complex autoinflammatory syndrome
Mutations in the N-terminal WD40 domain of coatomer protein complex subunit α (COPA) cause a type I interferonopathy, typically characterized by alveolar hemorrhage, arthritis, and nephritis. We described 3 heterozygous mutations in the C-terminal domain (CTD) of COPA (p.C1013S, p.R1058C, and p.R1142X) in 6 children from 3 unrelated families with a similar syndrome of autoinflammation and autoimmunity. We showed that these CTD COPA mutations disrupt the integrity and the function of coat protein complex I (COPI). In COPAR1142X and COPAR1058C fibroblasts, we demonstrated that COPI dysfunction causes both an anterograde ER-to-Golgi and a retrograde Golgi-to-ER trafficking defect. The disturbed intracellular trafficking resulted in a cGAS/STING-dependent upregulation of the type I IFN signaling in patients and patient-derived cell lines, albeit through a distinct molecular mechanism in comparison with mutations in the WD40 domain of COPA. We showed that CTD COPA mutations induce an activation of ER stress and NF-κB signaling in patient-derived primary cell lines. These results demonstrate the importance of the integrity of the CTD of COPA for COPI function and homeostatic intracellular trafficking, essential to ER homeostasis. CTD COPA mutations result in disease by increased ER stress, disturbed intracellular transport, and increased proinflammatory signaling.