Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
93
result(s) for
"Michalska, Joanna"
Sort by:
Initial stage of the biofilm formation on the NiTi and Ti6Al4V surface by the sulphur-oxidizing bacteria and sulphate-reducing bacteria
2017
The susceptibility to the fouling of the NiTi and Ti6Al4V alloys due to the adhesion of microorganisms and the biofilm formation is very significant, especially in the context of an inflammatory state induced by implants contaminated by bacteria, and the implants corrosion stimulated by bacteria. The aim of this work was to examine the differences between the sulphur-oxidizing bacteria (SOB) and sulphate-reducing bacteria (SRB) strains in their affinity for NiTi and Ti6Al4V alloys. The biofilms formed on alloy surfaces by the cells of five bacterial strains (aerobic SOB Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans, and anaerobic SRB Desulfovibrio desulfuricans—3 strains) were studied using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The protein concentrations in liquid media have also been analyzed. The results indicate that both alloys tested may be colonized by SOB and SRB strains. In the initial stage of the biofilm formation, the higher affinity of SRB to both the alloys has been documented. However, the SOB strains have indicated the higher (although differentiated) adaptability to changing environment as compared with SRB. Stimulation of the SRB growth on the alloys surface was observed during incubation in the liquid culture media supplemented with artificial saliva, especially of lower pH (imitated conditions under the inflammatory state, for example in the periodontitis course). The results point to the possible threat to the human health resulting from the contamination of the titanium implant alloys surface by the SOB (A. thiooxidans and A. ferrooxidans) and SRB (D. desulfuricans). Graphical abstract [InlineMediaObject not available: see fulltext.]
Journal Article
Bioactivity Performance of Pure Mg after Plasma Electrolytic Oxidation in Silicate-Based Solutions
by
Mishchenko, Oleg
,
Pogorielov, Maksym
,
Dryhval, Bohdan
in
Alloys
,
Anti-Bacterial Agents - pharmacology
,
antibacterial properties
2021
The biodegradable metals, including magnesium (Mg), are a convenient alternative to permanent metals but fast uncontrolled corrosion limited wide clinical application. Formation of a barrier coating on Mg alloys could be a successful strategy for the production of a stable external layer that prevents fast corrosion. Our research was aimed to develop an Mg stable oxide coating using plasma electrolytic oxidation (PEO) in silicate-based solutions. 99.9% pure Mg alloy was anodized in electrolytes contained mixtures of sodium silicate and sodium fluoride, calcium hydroxide and sodium hydroxide. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), contact angle (CA), Photoluminescence analysis and immersion tests were performed to assess structural and long-term corrosion properties of the new coating. Biocompatibility and antibacterial potential of the new coating were evaluated using U2OS cell culture and the gram-positive Staphylococcus aureus (S. aureus, strain B 918). PEO provided the formation of a porous oxide layer with relatively high roughness. It was shown that Ca(OH)2 was a crucial compound for oxidation and surface modification of Mg implants, treated with the PEO method. The addition of Ca2+ ions resulted in more intense oxidation of the Mg surface and growth of the oxide layer with a higher active surface area. Cell culture experiments demonstrated appropriate cell adhesion to all investigated coatings with a significantly better proliferation rate for the samples treated in Ca(OH)2-containing electrolyte. In contrast, NaOH-based electrolyte provided more relevant antibacterial effects but did not support cell proliferation. In conclusion, it should be noted that PEO of Mg alloy in silicate baths containing Ca(OH)2 provided the formation of stable biocompatible oxide coatings that could be used in the development of commercial degradable implants.
Journal Article
Changes in the activity of ovine blood-derived macrophages stimulated with antimicrobial peptide extract (AMP) or platelet-rich plasma (PRP)
by
Wessely-Szponder, Joanna
,
Szponder, Tomasz
,
Michalska, Joanna
in
Antimicrobial activity
,
Antimicrobial agents
,
Antimicrobial peptides
2019
Introduction: Antimicrobial peptides (AMP) are a large group of innate immune effectors, which apart from antimicrobial activity show immunomodulative properties. Platelet-rich plasma (PRP) is a source of autologous growth factors and is used for stimulation of bone and soft tissue healing. The purpose of this study was to assess the influence of PRP and AMP extract on ovine monocyte-derived macrophage cultures. Material and Methods: The study was conducted on ovine macrophages (Mfs) previously stimulated with LPS or dexamethasone and then with preparations of PRP or AMP. Following activation of the Mfs their morphological and functional features were assessed. Results: The study revealed pro-inflammatory influence of both examined preparations on Mfs cultures on the basis of morphology, ROS generation and arginase activity. Both preparations enhanced the pro-inflammatory response of cultured Mfs. Conclusion: This activity may intensify the antimicrobial action of Mfs, however, in cases of excessive and prolonged inflammation the use of these preparations should be limited.
Journal Article
An Increase in Alpha Band Frequency in Resting State EEG after Electrical Stimulation of the Ear in Tinnitus Patients—A Pilot Study
by
Olszewski, Jurek
,
Michalska, Joanna
,
Polatyńska, Katarzyna
in
Brain research
,
Cortex
,
cortical activity
2016
In our clinic invasive transtympanal promontory positive DC stimulations were first used, with a success rate of 42%. However, non-invasive hydrotransmissive negative DC stimulations are now favored, with improvement being obtained in 37.8% directly after the treatment, and 51.3% in a follow up 1 month after treatment. The further improvement after 1 month may be due to neuroplastic changes at central level as a result of altered peripheral input. The aim of the study was to determine how/whether a single electrical stimulation of the ear influences cortical activity, and whether changes observed in tinnitus after electrical stimulation are associated with any changes in cortical activity recorded in EEG. The study included 12 tinnitus patients (F-6, M-6) divided into two groups. Group I comprised six patients with unilateral tinnitus - unilateral, ipsilateral ES was performed. Group II comprised six patients with bilateral tinnitus-bilateral ES was performed. ES was performed using a custom-made apparatus. The active, silver probe-was immersed inside the external ear canal filled with saline. The passive electrode was placed on the forehead. The stimulating frequency was 250 Hz, the intensity ranged from 0.14 to 1.08 mA. The voltage was kept constant at 3 V. The duration of stimulation was 4 min. The EEG recording (Deymed QEST 32) was performed before and after ES. The patients assessed the intensity of tinnitus on the VAS 1-10.
In both groups an improvement in VAS was observed-in group I-in five ears (83.3%), in group II-in seven ears (58.3%). In Group I, a significant increase in the upper and lower limit frequency of alpha band was observed in the central temporal and frontal regions following ES. These changes, however, were not correlated with improvement in tinnitus. No significant changes were observed in the beta and theta bands and in group II. Preliminary results of our research reveal a change in cortical activity after electrical stimulations of the ear. However, it remains unclear if it is primary or secondary to peripheral auditory excitation. No similar studies had been found in the literature.
Journal Article
A Parameter-based Method for Translating Polish Contract Law Terms into Spanish
2016
The paper deals with problems of legal translation from Polish into
Spanish. It analyses selected terms related to contracts which are regulated
in the Polish Civil Code and their possible translations into Spanish. In order
to find adequate translation equivalents the author applies the method of
parametrisation of legal terms (along with the method of comparing parallel
texts and the skopos theory). The parametrisation of legal terms helps to systematically
characterise and compare them and thus to identify differences in
the meanings of the source language and target language terms and to choose
the best equivalents. It may also facilitate the selection of a technique of providing
translation equivalents for non-equivalent or partially equivalent terms.
Parametrisation is understood as determining for each analysed term a set of
properties it shows with respect to translationally relevant parameters – one
property out of each parameter. A parameter is conceived of as a set of homogeneous
properties.
Journal Article
Refinement of cryo-EM 3D maps with a self-supervised denoising model: crefDenoiser
by
Rzepiela, Andrzej J.
,
Agarwal, Ishaant
,
Nørrelykke, Simon F.
in
3d reconstruction and image processing
,
computational modeling
,
cryo-em
2024
Cryogenic electron microscopy (cryo-EM) is a pivotal technique for imaging macromolecular structures. However, despite extensive processing of large image sets collected in cryo-EM experiments to amplify the signal-to-noise ratio, the reconstructed 3D protein-density maps are often limited in quality due to residual noise, which in turn affects the accuracy of the macromolecular representation. Here, crefDenoiser is introduced, a denoising neural network model designed to enhance the signal in 3D cryo-EM maps produced with standard processing pipelines. The crefDenoiser model is trained without the need for `clean' ground-truth target maps. Instead, a custom dataset is employed, composed of real noisy protein half-maps sourced from the Electron Microscopy Data Bank repository. Competing with the current state-of-the-art, crefDenoiser is designed to optimize for the theoretical noise-free map during self-supervised training. We demonstrate that our model successfully amplifies the signal across a wide variety of protein maps, outperforming a classic map denoiser and following a network-based sharpening model. Without biasing the map, the proposed denoising method leads to improved visibility of protein structural features, including protein domains, secondary structure elements and modest high-resolution feature restoration.
Journal Article
Amplicon Sequencing of Variable 16S rRNA from Bacteria and ITS2 Regions from Fungi and Plants, Reveals Honeybee Susceptibility to Diseases Results from Their Forage Availability under Anthropogenic Landscapes
by
Martín Hernández, Raquel
,
Krutmuang, Patcharin
,
Higes Pascual, Mariano
in
16S rRNA
,
Acarapis woodi
,
apiculture
2021
European Apis mellifera and Asian Apis cerana honeybees are essential crop pollinators. Microbiome studies can provide complex information on health and fitness of these insects in relation to environmental changes, and plant availability. Amplicon sequencing of variable regions of the 16S rRNA from bacteria and the internally transcribed spacer (ITS) regions from fungi and plants allow identification of the metabiome. These methods provide a tool for monitoring otherwise uncultured microbes isolated from the gut of the honeybees. They also help monitor the composition of the gut fungi and, intriguingly, pollen collected by the insect. Here, we present data from amplicon sequencing of the 16S rRNA from bacteria and ITS2 regions from fungi and plants derived from honeybees collected at various time points from anthropogenic landscapes such as urban areas in Poland, UK, Spain, Greece, and Thailand. We have analysed microbial content of honeybee intestine as well as fungi and pollens. Furthermore, isolated DNA was used as the template for screening pathogens: Nosema apis, N. ceranae, N. bombi, tracheal mite (Acarapis woodi), any organism in the parasitic order Trypanosomatida, including Crithidia spp. (i.e., Crithidia mellificae), neogregarines including Mattesia and Apicystis spp. (i.e., Apicistis bombi). We conclude that differences between samples were mainly influenced by the bacteria, plant pollen and fungi, respectively. Moreover, honeybees feeding on a sugar based diet were more prone to fungal pathogens (Nosema ceranae) and neogregarines. In most samples Nosema sp. and neogregarines parasitized the host bee at the same time. A higher load of fungi, and bacteria groups such as Firmicutes (Lactobacillus); γ-proteobacteria, Neisseriaceae, and other unidentified bacteria was observed for Nosema ceranae and neogregarine infected honeybees. Healthy honeybees had a higher load of plant pollen, and bacteria groups such as: Orbales, Gilliamella, Snodgrassella, and Enterobacteriaceae. Finally, the period when honeybees switch to the winter generation (longer-lived forager honeybees) is the most sensitive to diet perturbations, and hence pathogen attack, for the whole beekeeping season. It is possible that evolutionary adaptation of bees fails to benefit them in the modern anthropomorphised environment.
Journal Article
Electrochemical Polishing of Ti and Ti 6 Al 4 V Alloy in Non-Aqueous Solution of Sulfuric Acid
2024
This paper reports the results of our study on electrochemical polishing of titanium and a Ti-based alloy using non-aqueous electrolyte. It was shown that electropolishing ensured the removal of surface defects, thereby providing surface smoothing and decreasing surface roughness. The research was conducted using samples made of titanium and Ti
Al
V alloy, as well as implant system elements: implant analog, multiunit, and healing screw. Electropolishing was carried out under a constant voltage (10-15 V) with a specified current density. The electrolyte used contained methanol and sulfuric acid. The modified surface was subjected to a thorough analysis regarding its surface morphology, chemical composition, and physicochemical properties. Scanning electron microscope images and profilometer tests of roughness confirmed significantly smoother surfaces after electropolishing. The surface profile analysis of processed samples also yielded satisfactory results, showing less imperfections than before modification. The EDX spectra showed that electropolishing does not have significant influence on the chemical composition of the samples.
Journal Article
Electrochemical Polishing of Ti and Tisub.6Alsub.4V Alloy in Non-Aqueous Solution of Sulfuric Acid
This paper reports the results of our study on electrochemical polishing of titanium and a Ti-based alloy using non-aqueous electrolyte. It was shown that electropolishing ensured the removal of surface defects, thereby providing surface smoothing and decreasing surface roughness. The research was conducted using samples made of titanium and Ti[sub.6]Al[sub.4]V alloy, as well as implant system elements: implant analog, multiunit, and healing screw. Electropolishing was carried out under a constant voltage (10–15 V) with a specified current density. The electrolyte used contained methanol and sulfuric acid. The modified surface was subjected to a thorough analysis regarding its surface morphology, chemical composition, and physicochemical properties. Scanning electron microscope images and profilometer tests of roughness confirmed significantly smoother surfaces after electropolishing. The surface profile analysis of processed samples also yielded satisfactory results, showing less imperfections than before modification. The EDX spectra showed that electropolishing does not have significant influence on the chemical composition of the samples.
Journal Article
Electrochemical Polishing of Ti and Ti6Al4V Alloy in Non-Aqueous Solution of Sulfuric Acid
by
Michalska, Joanna
,
Simka, Wojciech
,
Zieliński, Rafał
in
Aluminum
,
Aqueous electrolytes
,
Aqueous solutions
2024
This paper reports the results of our study on electrochemical polishing of titanium and a Ti-based alloy using non-aqueous electrolyte. It was shown that electropolishing ensured the removal of surface defects, thereby providing surface smoothing and decreasing surface roughness. The research was conducted using samples made of titanium and Ti6Al4V alloy, as well as implant system elements: implant analog, multiunit, and healing screw. Electropolishing was carried out under a constant voltage (10–15 V) with a specified current density. The electrolyte used contained methanol and sulfuric acid. The modified surface was subjected to a thorough analysis regarding its surface morphology, chemical composition, and physicochemical properties. Scanning electron microscope images and profilometer tests of roughness confirmed significantly smoother surfaces after electropolishing. The surface profile analysis of processed samples also yielded satisfactory results, showing less imperfections than before modification. The EDX spectra showed that electropolishing does not have significant influence on the chemical composition of the samples.
Journal Article