Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
9 result(s) for "Mikulkova, Zuzana"
Sort by:
The Influence of Precursor pH on the Synthesis and Morphology of AuNPs Synthesized Using Green Tea Leaf Extract
This study investigates the effect of precursor pH (1.3, 2, 4, 6, 8, and 10) on the synthesis of gold nanoparticles (AuNPs) via a green synthesis approach using an aqueous extract of green tea (Camellia sinensis) leaves. The formation of AuNPs was monitored using UV-vis spectrophotometry and confirmed using transmission electron microscopy (TEM). The results confirmed that the morphology and size of the AuNPs are strongly dependent on the pH of the reaction medium. Based on spectral features, the color of the colloids, and TEM analysis, the synthesized samples were classified into three groups. The first (pH 8 and 10) contained predominantly spherical nanoparticles with an average diameter of ~18 nm, the second (pH 1.3 and 2) contained different shaped nanoparticles (20–250 nm in diameter), and the third (pH 4 and 6) contained flower-like nanostructures with a mean diameter of ~60 nm. UV-vis analysis revealed good stability of all AuNP colloids, except at pH 1.3, where a significant decrease in absorbance intensity over time was observed. These findings confirm that tuning the precursor pH allows for controlled manipulation of nanoparticle morphology and stability in green synthesis systems.
Deciphering the complex circulating immune cell microenvironment in chronic lymphocytic leukaemia using patient similarity networks
The tissue microenvironment in chronic lymphocytic leukaemia (CLL) plays a key role in the pathogenesis of CLL, but the complex blood microenvironment in CLL has not yet been fully characterised. Therefore, immunophenotyping of circulating immune cells in 244 CLL patients and 52 healthy controls was performed using flow cytometry and analysed by multivariate Patient Similarity Networks (PSNs). Our study revealed high inter-individual heterogeneity in the distribution and activation of bystander immune cells in CLL, depending on the bulk of the CLL cells. High CLL counts were associated with low activation on circulating monocytes and T cells and vice versa. The highest activation of immune cells, particularly of intermediate and non-classical monocytes, was evident in patients treated with novel agents. PSNs revealed a low activation of immune cells in CLL progression, irrespective of IgHV status, Binet stage and TP53 disruption. Patients with high intermediate monocytes (> 5.4%) with low activation were 2.5 times more likely (95% confidence interval 1.421–4.403, P  = 0.002) to had shorter time-to-treatment than those with low monocyte counts. Our study demonstrated the association between the activation of circulating immune cells and the bulk of CLL cells. The highest activation of bystander immune cells was detected in patients with slow disease course and in those treated with novel agents. The subset of intermediate monocytes showed predictive value for time-to-treatment in CLL.
Network Analysis for Uncovering the Relationship between Host Response and Clinical Factors to Virus Pathogen: Lessons from SARS-CoV-2
Analysing complex datasets while maintaining the interpretability and explainability of outcomes for clinicians and patients is challenging, not only in viral infections. These datasets often include a variety of heterogeneous clinical, demographic, laboratory, and personal data, and it is not a single factor but a combination of multiple factors that contribute to patient characterisation and host response. Therefore, multivariate approaches are needed to analyse these complex patient datasets, which are impossible to analyse with univariate comparisons (e.g., one immune cell subset versus one clinical factor). Using a SARS-CoV-2 infection as an example, we employed a patient similarity network (PSN) approach to assess the relationship between host immune factors and the clinical course of infection and performed visualisation and data interpretation. A PSN analysis of ~85 immunological (cellular and humoral) and ~70 clinical factors in 250 recruited patients with coronavirus disease (COVID-19) who were sampled four to eight weeks after a PCR-confirmed SARS-CoV-2 infection identified a minimal immune signature, as well as clinical and laboratory factors strongly associated with disease severity. Our study demonstrates the benefits of implementing multivariate network approaches to identify relevant factors and visualise their relationships in a SARS-CoV-2 infection, but the model is generally applicable to any complex dataset.
Juvenile Primary Sjögren Syndrome in a 15-Year-Old Boy with Renal Involvement: A Case Report and Review of the Literature
Juvenile primary Sjögren syndrome (pSS) with renal involvement is extremely rare, reported approximately in 50 children, predominantly girls. Here, we present the first reported case of a male child with juvenile pSS with ocular surface disease (previously keratoconjunctivitis sicca), submandibular salivary gland involvement, and tubulointerstitial nephritis. First, two symptoms were clinically apparent at presentation. We illustrate here that kidney involvement in pSS should be actively looked for, as juvenile pSS may be associated with asymptomatic renal involvement. Immunophenotyping of peripheral blood cells using multicolor flow cytometry revealed at the time of diagnosis changes in both adaptive (T memory cells and B memory cells), and innate immunity (an increased activation of natural killer cells, as well as monocytes and neutrophils, and an increased representation of intermediate monocytes). Our case report points to the importance of kidney examination, early diagnosis and therapy in juvenile pSS, as well as highlights international collaboration to obtain more data for this rare disease.
High CXCR3 on Leukemic Cells Distinguishes IgHVmut from IgHVunmut in Chronic Lymphocytic Leukemia: Evidence from CD5high and CD5low Clones
Despite the shared pattern of surface antigens, neoplastic cells in chronic lymphocytic leukemia (CLL) are highly heterogeneous in CD5 expression, a marker linked to a proliferative pool of neoplastic cells. To further characterize CD5high and CD5low neoplastic cells, we assessed the chemokine receptors (CCR5, CCR7, CCR10, CXCR3, CXCR4, CXCR5) and adhesion molecules (CD54, CD62L, CD49d) on the CD5high and CD5low subpopulations, defined by CD5/CD19 coexpression, in peripheral blood of CLL patients (n=60) subgrouped according to the IgHV mutational status (IgHVmut, n=24; IgHVunmut, n=36). CD5high subpopulation showed a high percentage of CXCR3 (P<0.001), CCR10 (P=0.001), and CD62L (P=0.031) and high levels of CXCR5 (P=0.005), CCR7 (P=0.013) compared to CD5low cells expressing high CXCR4 (P<0.001). Comparing IgHVmut and IgHVunmut patients, high levels of CXCR3 on CD5high and CD5low subpopulations were detected in the IgHVmut patients, with better discrimination in CD5low subpopulation. Levels of CXCR3 on CD5low subpopulation were associated with time to the next treatment, thus further confirming its prognostic value. Taken together, our analysis revealed higher CXCR3 expression on both CD5high and CD5low neoplastic cells in IgHVmut with a better prognosis compared to IgHVunmut patients. Contribution of CXCR3 to CLL pathophysiology and its suitability for prognostication and therapeutic exploitation deserves future investigations.
Anti-domain 1 β2 glycoprotein antibodies increase expression of tissue factor on monocytes and activate NK Cells and CD8+ cells in vitro
Background β2-Glycoprotein I (β2GPI) represents the major antigenic target for antiphospholipid antibodies (aPL), with domain 1 (D1) being identified as a risk factor for thrombosis and pregnancy complications in APS. We aimed to analyse the ability of aPL, and particularly anti-D1 β2GPI, to stimulate prothrombotic and proinflammatory activity of immune cells in vitro. Methods Peripheral blood mononuclear cells (PBMCs) from 11 healthy individuals were incubated with: (1) “anti-D1(+)”—pooled plasma derived from patients suspected of having APS contained anticardiolipin antibodies (aCL), lupus anticoagulant (LA), anti-β2GPI and anti-D1 β2GPI; (2) “anti-D1(−)”—pooled plasma from patients suspected of having APS contained aCL, LA, anti-β2GPI, and negative for anti-D1 β2GPI; (3) “seronegative”—negative for aPL. Results The presence of anti-D1(+) and anti-D1(−) plasma resulted in increased HLA-DR and CD11b on monocytes. While only anti-D1(+) plasma markedly increased the percentage and median fluorescence intensity (MFI) of CD142 (tissue factor, TF) on monocytes in comparison with those cultured with anti-D1(−) and seronegative plasma. Anti-D1(+) plasma resulted in increased percentage and MFI of activation marker CD69 on NK and T cytotoxic cells. Expression of IgG receptor FcγRIII(CD16) on monocytes and NK cells was down-regulated by the anti-D1(+) plasma. Conclusions Taking together, our study shows the ability of patient-derived aPL to induce immune cell activation and TF expression on monocytes. For the first time, we demonstrated the influence of anti-D1 β2GPI on the activation status of monocytes, NK and cytotoxic T cells. Our findings further support a crucial role of D1 epitope in the promotion of thrombosis and obstetrical complications in APS.
Towards a Better Characterisation of Leukemic Cells in Chronic Lymphocytic Leukaemia: Cell-Size Heterogeneity Reflects Their Activation Status and Migratory Abilities
Chronic lymphocytic leukaemia (CLL) is a genetically, morphologically and phenotypically heterogeneous chronic disease with clinical variability between patients. Whether the significant heterogeneity of cell size within the CLL population contributes to the heterogeneous features of this disease has not been investigated. The present study aimed to characterise the phenotypic and functional properties of two subpopulations of typical CLL cells that differ in cell size: small (s-CLL) and large (l-CLL) CLL cells delineated by forward scatter cytometry. The s-CLL cells were characterised by the CD5lowCXCR4hi phenotype, while the l-CLL cells were characterised by the CD5hiCXCR4dim phenotype and indicated a higher expression of CXCR3, CD20, CD38 and HLA-DR. The l-CLL cells displayed higher migration activity towards CXCL12, a tendency towards a higher proliferation rate and an increased capacity to produce IgM in the presence of CpG compared with s-CLL cells. When stimulated with CpG and CXCL12, l-CLL cells were characterised by a higher polarisation phenotype and motility than s-CLL cells. Our study revealed that the differences in CLL cell size reflected their activation status, polarisation and migratory abilities. Our data provide evidence of the importance of cell-size heterogeneity within a CLL pool and the dynamics of cell-size changes for disease pathogenesis, thus deserving further investigation.
High CXCR3 on Leukemic Cells Distinguishes IgHV mut from IgHV unmut in Chronic Lymphocytic Leukemia: Evidence from CD5high and CD5low Clones
Despite the shared pattern of surface antigens, neoplastic cells in chronic lymphocytic leukemia (CLL) are highly heterogeneous in CD5 expression, a marker linked to a proliferative pool of neoplastic cells. To further characterize CD5high and CD5low neoplastic cells, we assessed the chemokine receptors (CCR5, CCR7, CCR10, CXCR3, CXCR4, CXCR5) and adhesion molecules (CD54, CD62L, CD49d) on the CD5high and CD5low subpopulations, defined by CD5/CD19 coexpression, in peripheral blood of CLL patients (n = 60) subgrouped according to the IgHV mutational status (IgHV mut, n = 24; IgHV unmut, n = 36). CD5high subpopulation showed a high percentage of CXCR3 (P < 0.001), CCR10 (P = 0.001), and CD62L (P = 0.031) and high levels of CXCR5 (P = 0.005), CCR7 (P = 0.013) compared to CD5low cells expressing high CXCR4 (P < 0.001). Comparing IgHV mut and IgHV unmut patients, high levels of CXCR3 on CD5high and CD5low subpopulations were detected in the IgHV mut patients, with better discrimination in CD5low subpopulation. Levels of CXCR3 on CD5low subpopulation were associated with time to the next treatment, thus further confirming its prognostic value. Taken together, our analysis revealed higher CXCR3 expression on both CD5high and CD5low neoplastic cells in IgHV mut with a better prognosis compared to IgHV unmut patients. Contribution of CXCR3 to CLL pathophysiology and its suitability for prognostication and therapeutic exploitation deserves future investigations.Despite the shared pattern of surface antigens, neoplastic cells in chronic lymphocytic leukemia (CLL) are highly heterogeneous in CD5 expression, a marker linked to a proliferative pool of neoplastic cells. To further characterize CD5high and CD5low neoplastic cells, we assessed the chemokine receptors (CCR5, CCR7, CCR10, CXCR3, CXCR4, CXCR5) and adhesion molecules (CD54, CD62L, CD49d) on the CD5high and CD5low subpopulations, defined by CD5/CD19 coexpression, in peripheral blood of CLL patients (n = 60) subgrouped according to the IgHV mutational status (IgHV mut, n = 24; IgHV unmut, n = 36). CD5high subpopulation showed a high percentage of CXCR3 (P < 0.001), CCR10 (P = 0.001), and CD62L (P = 0.031) and high levels of CXCR5 (P = 0.005), CCR7 (P = 0.013) compared to CD5low cells expressing high CXCR4 (P < 0.001). Comparing IgHV mut and IgHV unmut patients, high levels of CXCR3 on CD5high and CD5low subpopulations were detected in the IgHV mut patients, with better discrimination in CD5low subpopulation. Levels of CXCR3 on CD5low subpopulation were associated with time to the next treatment, thus further confirming its prognostic value. Taken together, our analysis revealed higher CXCR3 expression on both CD5high and CD5low neoplastic cells in IgHV mut with a better prognosis compared to IgHV unmut patients. Contribution of CXCR3 to CLL pathophysiology and its suitability for prognostication and therapeutic exploitation deserves future investigations.
High CXCR3 on Leukemic Cells Distinguishes IgHV mut from IgHV unmut in Chronic Lymphocytic Leukemia: Evidence from CD5 high and CD5 low Clones
Despite the shared pattern of surface antigens, neoplastic cells in chronic lymphocytic leukemia (CLL) are highly heterogeneous in CD5 expression, a marker linked to a proliferative pool of neoplastic cells. To further characterize CD5 high and CD5 low neoplastic cells, we assessed the chemokine receptors (CCR5, CCR7, CCR10, CXCR3, CXCR4, CXCR5) and adhesion molecules (CD54, CD62L, CD49d) on the CD5 high and CD5 low subpopulations, defined by CD5/CD19 coexpression, in peripheral blood of CLL patients ( n = 60) subgrouped according to the IgHV mutational status ( IgHV mut , n = 24; IgHV unmut , n = 36). CD5 high subpopulation showed a high percentage of CXCR3 ( P < 0.001), CCR10 ( P = 0.001), and CD62L ( P = 0.031) and high levels of CXCR5 ( P = 0.005), CCR7 ( P = 0.013) compared to CD5 low cells expressing high CXCR4 ( P < 0.001). Comparing IgHV mut and IgHV unmut patients, high levels of CXCR3 on CD5 high and CD5 low subpopulations were detected in the IgHV mut patients, with better discrimination in CD5 low subpopulation. Levels of CXCR3 on CD5 low subpopulation were associated with time to the next treatment, thus further confirming its prognostic value. Taken together, our analysis revealed higher CXCR3 expression on both CD5 high and CD5 low neoplastic cells in IgHV mut with a better prognosis compared to IgHV unmut patients. Contribution of CXCR3 to CLL pathophysiology and its suitability for prognostication and therapeutic exploitation deserves future investigations.