Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
101
result(s) for
"Milde, Till"
Sort by:
Practical implementation of DNA methylation and copy-number-based CNS tumor diagnostics: the Heidelberg experience
by
Schmid, Simone
,
Sahm, Felix
,
Stichel, Damian
in
Central nervous system
,
Deoxyribonucleic acid
,
DNA fingerprinting
2018
Recently, we described a machine learning approach for classification of central nervous system tumors based on the analysis of genome-wide DNA methylation patterns [6]. Here, we report on DNA methylation-based central nervous system (CNS) tumor diagnostics conducted in our institution between the years 2015 and 2018. In this period, more than 1000 tumors from the neurosurgical departments in Heidelberg and Mannheim and more than 1000 tumors referred from external institutions were subjected to DNA methylation analysis for diagnostic purposes. We describe our current approach to the integrated diagnosis of CNS tumors with a focus on constellations with conflicts between morphological and molecular genetic findings. We further describe the benefit of integrating DNA copy-number alterations into diagnostic considerations and provide a catalog of copy-number changes for individual DNA methylation classes. We also point to several pitfalls accompanying the diagnostic implementation of DNA methylation profiling and give practical suggestions for recurring diagnostic scenarios.
Journal Article
Risk stratification of childhood medulloblastoma in the molecular era: the current consensus
by
André, Nicolas
,
Doz, Francois
,
Dufour, Christelle
in
Adolescent
,
Biomarkers
,
Biomarkers, Tumor - genetics
2016
Historical risk stratification criteria for medulloblastoma rely primarily on clinicopathological variables pertaining to age, presence of metastases, extent of resection, histological subtypes and in some instances individual genetic aberrations such as
MYC
and
MYCN
amplification. In 2010, an international panel of experts established consensus defining four main subgroups of medulloblastoma (WNT, SHH, Group 3 and Group 4) delineated by transcriptional profiling. This has led to the current generation of biomarker-driven clinical trials assigning WNT tumors to a favorable prognosis group in addition to clinicopathological criteria including
MYC
and
MYCN
gene amplifications. However, outcome prediction of non-WNT subgroups is a challenge due to inconsistent survival reports. In 2015, a consensus conference was convened in Heidelberg with the objective to further refine the risk stratification in the context of subgroups and agree on a definition of risk groups of non-infant, childhood medulloblastoma (ages 3–17). Published and unpublished data over the past 5 years were reviewed, and a consensus was reached regarding the level of evidence for currently available biomarkers. The following risk groups were defined based on current survival rates: low risk (>90 % survival), average (standard) risk (75–90 % survival), high risk (50–75 % survival) and very high risk (<50 % survival) disease. The WNT subgroup and non-metastatic Group 4 tumors with whole chromosome 11 loss or whole chromosome 17 gain were recognized as low-risk tumors that may qualify for reduced therapy. High-risk strata were defined as patients with metastatic SHH or Group 4 tumors, or
MYCN
-amplified SHH medulloblastomas. Very high-risk patients are Group 3 with metastases or SHH with
TP53
mutation. In addition, a number of consensus points were reached that should be standardized across future clinical trials. Although we anticipate new data will emerge from currently ongoing and recently completed clinical trials, this consensus can serve as an outline for prioritization of certain molecular subsets of tumors to define and validate risk groups as a basis for future clinical trials.
Journal Article
Response to trametinib treatment in progressive pediatric low-grade glioma patients
2020
IntroductionA hallmark of pediatric low-grade glioma (pLGG) is aberrant signaling of the mitogen activated protein kinase (MAPK) pathway. Hence, inhibition of MAPK signaling using small molecule inhibitors such as MEK inhibitors (MEKi) may be a promising strategy.MethodsIn this multi-center retrospective centrally reviewed study, we analyzed 18 patients treated with the MEKi trametinib for progressive pLGG as an individual treatment decision between 2015 and 2019. We have investigated radiological response as per central radiology review, molecular classification and investigator observed toxicity.ResultsWe observed 6 partial responses (PR), 2 minor responses (MR), and 10 stable diseases (SD) as best overall responses. Disease control rate (DCR) was 100% under therapy. Responses were observed in KIAA1549:BRAF- as well as neurofibromatosis type 1 (NF1)-driven tumors. Median treatment time was 12.5 months (range: 2 to 27 months). Progressive disease was observed in three patients after cessation of trametinib treatment within a median time of 3 (2–4) months. Therapy related adverse events occurred in 16/18 patients (89%). Eight of 18 patients (44%) experienced severe adverse events (CTCAE III and/or IV; most commonly skin rash and paronychia) requiring dose reduction in 6/18 patients (33%), and discontinuation of treatment in 2/18 patients (11%).ConclusionsTrametinib was an active and feasible treatment for progressive pLGG leading to disease control in all patients. However, treatment related toxicity interfered with treatment in individual patients, and disease control after MEKi withdrawal was not sustained in a fraction of patients. Our data support in-class efficacy of MEKi in pLGGs and necessity for upfront randomized testing of trametinib against current standard chemotherapy regimens.
Journal Article
Next-generation sequencing in routine brain tumor diagnostics enables an integrated diagnosis and identifies actionable targets
2016
With the number of prognostic and predictive genetic markers in neuro-oncology steadily growing, the need for comprehensive molecular analysis of neuropathology samples has vastly increased. We therefore developed a customized enrichment/hybrid-capture-based next-generation sequencing (NGS) gene panel comprising the entire coding and selected intronic and promoter regions of 130 genes recurrently altered in brain tumors, allowing for the detection of single nucleotide variations, fusions, and copy number aberrations. Optimization of probe design, library generation and sequencing conditions on 150 samples resulted in a 5-workday routine workflow from the formalin-fixed paraffin-embedded sample to neuropathological report. This protocol was applied to 79 retrospective cases with established molecular aberrations for validation and 71 prospective cases for discovery of potential therapeutic targets. Concordance of NGS compared to established, single biomarker methods was 98.0 %, with discrepancies resulting from one case where a
TERT
promoter mutation was not called by NGS and three ATRX mutations not being detected by Sanger sequencing. Importantly, in samples with low tumor cell content, NGS was able to identify mutant alleles that were not detectable by traditional methods. Information derived from NGS data identified potential targets for experimental therapy in 37/47 (79 %) glioblastomas, 9/10 (90 %) pilocytic astrocytomas, and 5/14 (36 %) medulloblastomas in the prospective target discovery cohort. In conclusion, we present the settings for high-throughput, adaptive next-generation sequencing in routine neuropathology diagnostics. Such an approach will likely become highly valuable in the near future for treatment decision making, as more therapeutic targets emerge and genetic information enters the classification of brain tumors.
Journal Article
Histone deacetylase 10 promotes autophagy-mediated cell survival
by
Hermann-Josef Gröne
,
Ina Oehme
,
Olaf Witt
in
Autophagy
,
Autophagy - physiology
,
Biological Sciences
2013
Tumor cells activate autophagy in response to chemotherapy-induced DNA damage as a survival program to cope with metabolic stress. Here, we provide in vitro and in vivo evidence that histone deacetylase (HDAC)10 promotes autophagy-mediated survival in neuroblastoma cells. We show that both knockdown and inhibition of HDAC10 effectively disrupted autophagy associated with sensitization to cytotoxic drug treatment in a panel of highly malignant V-MYC myelocytomatosis viral-related oncogene, neuroblastoma derived- amplified neuroblastoma cell lines, in contrast to nontransformed cells. HDAC10 depletion in neuroblastoma cells interrupted autophagic flux and induced accumulation of autophagosomes, lysosomes, and a prominent substrate of the autophagic degradation pathway, p62/sequestosome 1. Enforced HDAC10 expression protected neuroblastoma cells against doxorubicin treatment through interaction with heat shock protein 70 family proteins, causing their deacetylation. Conversely, heat shock protein 70/heat shock cognate 70 was acetylated in HDAC10-depleted cells. HDAC10 expression levels in high-risk neuroblastomas correlated with autophagy in gene-set analysis and predicted treatment success in patients with advanced stage 4 neuroblastomas. Our results demonstrate that HDAC10 protects cancer cells from cytotoxic agents by mediating autophagy and identify this HDAC isozyme as a druggable regulator of advanced-stage tumor cell survival. Moreover, these results propose a promising way to considerably improve treatment response in the neuroblastoma patient subgroup with the poorest outcome.
Journal Article
Safety and efficacy of mTOR inhibitor treatment in patients with tuberous sclerosis complex under 2 years of age – a multicenter retrospective study
2019
Background
Tuberous sclerosis complex (TSC) is a multisystem disease with prominent neurologic manifestations such as epilepsy, cognitive impairment and autism spectrum disorder. mTOR inhibitors have successfully been used to treat TSC-related manifestations in older children and adults. However, data on their safety and efficacy in infants and young children are scarce. The objective of this study is to assess the utility and safety of mTOR inhibitor treatment in TSC patients under the age of 2 years.
Results
A total of 17 children (median age at study inclusion 2.4 years, range 0–6; 12 males, 5 females) with TSC who received early mTOR inhibitor therapy were studied. mTOR inhibitor treatment was started at a median age of 5 months (range 0–19 months). Reasons for initiation of treatment were cardiac rhabdomyomas (6 cases), subependymal giant cell astrocytomas (SEGA, 5 cases), combination of cardiac rhabdomyomas and SEGA (1 case), refractory epilepsy (4 cases) and disabling congenital focal lymphedema (1 case). In all cases everolimus was used. Everolimus therapy was overall well tolerated. Adverse events were classified according to the
Common Terminology Criteria of Adverse Events
(CTCAE, Version 5.0). Grade 1–2 adverse events occurred in 12 patients and included mild transient stomatitis (2 cases), worsening of infantile acne (1 case), increases of serum cholesterol and triglycerides (4 cases), changes in serum phosphate levels (2 cases), increase of cholinesterase (2 cases), transient neutropenia (2 cases), transient anemia (1 case), transient lymphopenia (1 case) and recurrent infections (7 cases). No grade 3–4 adverse events were reported. Treatment is currently continued in 13/17 patients. Benefits were reported in 14/17 patients and included decrease of cardiac rhabdomyoma size and improvement of arrhythmia, decrease of SEGA size, reduction of seizure frequency and regression of congenital focal lymphedema. Despite everolimus therapy, two patients treated for intractable epilepsy are still experiencing seizures and another one treated for SEGA showed no volume reduction.
Conclusion
This retrospective multicenter study demonstrates that mTOR inhibitor treatment with everolimus is safe in TSC patients under the age of 2 years and shows beneficial effects on cardiac manifestations, SEGA size and early epilepsy.
Journal Article
Radiation-induced gliomas represent H3-/IDH-wild type pediatric gliomas with recurrent PDGFRA amplification and loss of CDKN2A/B
2021
Long-term complications such as radiation-induced second malignancies occur in a subset of patients following radiation-therapy, particularly relevant in pediatric patients due to the long follow-up period in case of survival. Radiation-induced gliomas (RIGs) have been reported in patients after treatment with cranial irradiation for various primary malignancies such as acute lymphoblastic leukemia (ALL) and medulloblastoma (MB). We perform comprehensive (epi-) genetic and expression profiling of RIGs arising after cranial irradiation for MB (n = 23) and ALL (n = 9). Our study reveals a unifying molecular signature for the majority of RIGs, with recurrent
PDGFRA
amplification and loss of
CDKN2A/B
and an absence of somatic hotspot mutations in genes encoding histone 3 variants or
IDH1/2
, uncovering diagnostic markers and potentially actionable targets.
Radiation-induced gliomas (RIGs) have been reported in patients after treatment with cranial irradiation for various primary malignancies but their origin are still unclear. Here, the authors define the genomic, epigenetic and transcriptional landscape of 32 RIGs cases.
Journal Article
Combined inhibition of ribonucleotide reductase and WEE1 induces synergistic anticancer activity in Ewing’s sarcoma cells
by
Ziener, Judy
,
Morales-Prieto, Diana M.
,
Becker, Sabine
in
Analysis
,
Antimitotic agents
,
Antineoplastic agents
2025
Background
Ewing’s sarcoma is a childhood bone and soft tissue cancer with poor prognosis. Treatment outcomes for Ewing’s sarcoma patients have improved only modestly over the past decades, making the development of new treatment strategies paramount. In this study, the combined targeting of ribonucleotide reductase (RNR) and WEE1 was explored for its effectiveness against Ewing’s sarcoma cells.
Methods
The RNR inhibitor triapine and the WEE1 inhibitors adavosertib and ZN-c3 were tested in p53 wild-type and p53 mutant Ewing’s sarcoma cells. The combination of adavosertib with the PARP inhibitors olaparib and veliparib was tested for comparison. Combinatorial effects were determined by flow cytometric analyses of cell death, loss of mitochondrial membrane potential and DNA fragmentation as well as by caspase 3/7 activity assay, immunoblotting and real-time RT-PCR. The drug interactions were assessed using combination index analysis.
Results
RNR and WEE1 inhibitors were weakly to moderately effective on their own, but highly effective in combination. The combination treatments were similarly effective in p53 wild-type and p53 mutant cells. They synergistically induced cell death and cooperated to elicit mitochondrial membrane potential decay, to activate caspase 3/7 and to trigger DNA fragmentation, evidencing the induction of the apoptotic cell death cascade. They also cooperated to boost CHK1 phosphorylation, indicating augmented replication stress after combination treatment. In comparison, the combination of adavosertib with PARP inhibitors produced weaker synergistic effects.
Conclusion
Our findings show that combined inhibition of RNR and WEE1 was effective against Ewing’s sarcoma in vitro. They thus provide a rationale for the evaluation of the potential of combined targeting of RNR and WEE1 in Ewing’s sarcoma in vivo.
Journal Article
Slitrk5 deficiency impairs corticostriatal circuitry and leads to obsessive-compulsive–like behaviors in mice
2010
Individuals with obsessive-compulsive disorder (OCD) perform obsessive repetitive actions. Shahin Rafii and his colleagues show that mice lacking the gene
Slitrk5
show OCD-like behavioral phenotypes and have deficits in corticostriatal communication in the brain.
Obsessive-compulsive disorder (OCD) is a common psychiatric disorder defined by the presence of obsessive thoughts and repetitive compulsive actions, and it often encompasses anxiety and depressive symptoms
1
,
2
. Recently, the corticostriatal circuitry has been implicated in the pathogenesis of OCD
3
,
4
. However, the etiology, pathophysiology and molecular basis of OCD remain unknown. Several studies indicate that the pathogenesis of OCD has a genetic component
5
,
6
,
7
,
8
. Here we demonstrate that loss of a neuron-specific transmembrane protein, SLIT and NTRK-like protein-5 (Slitrk5), leads to OCD-like behaviors in mice, which manifests as excessive self-grooming and increased anxiety-like behaviors, and is alleviated by the selective serotonin reuptake inhibitor fluoxetine.
Slitrk5
−/−
mice show selective overactivation of the orbitofrontal cortex, abnormalities in striatal anatomy and cell morphology and alterations in glutamate receptor composition, which contribute to deficient corticostriatal neurotransmission. Thus, our studies identify Slitrk5 as an essential molecule at corticostriatal synapses and provide a new mouse model of OCD-like behaviors.
Journal Article
Routine RNA sequencing of formalin-fixed paraffin-embedded specimens in neuropathology diagnostics identifies diagnostically and therapeutically relevant gene fusions
2019
Molecular markers have become pivotal in brain tumor diagnostics. Mutational analyses by targeted next-generation sequencing of DNA and array-based DNA methylation assessment with copy number analyses are increasingly being used in routine diagnostics. However, the broad variety of gene fusions occurring in brain tumors is marginally covered by these technologies and often only assessed by targeted assays. Here, we assessed the feasibility and clinical value of investigating gene fusions in formalin-fixed paraffin-embedded (FFPE) tumor tissues by next-generation mRNA sequencing in a routine diagnostic setting. After establishment and optimization of a workflow applicable in a routine setting, prospective diagnostic application in a neuropathology department for 26 months yielded relevant fusions in 66 out of 101 (65%) analyzed cases. In 43 (43%) cases, the fusions were of decisive diagnostic relevance and in 40 (40%) cases the fusion genes rendered a druggable target. A major strength of this approach was its ability to detect fusions beyond the canonical alterations for a given entity, and the unbiased search for any fusion event in cases with uncertain diagnosis and, thus, uncertain spectrum of expected fusions. This included both rare variants of established fusions which had evaded prior targeted analyses as well as the detection of previously unreported fusion events. While the impact of fusion detection on diagnostics is highly relevant, it is especially the detection of “druggable” fusions which will most likely provide direct benefit to the patients. The wider application of this approach for unbiased fusion identification therefore promises to be a major advance in identifying alterations with immediate impact on patient care.
Journal Article