Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
5 result(s) for "Mileikovsky, Maria"
Sort by:
Virus-free induction of pluripotency and subsequent excision of reprogramming factors
Virus-free iPS cells The discovery that non-germline adult cells can be reprogrammed to become pluripotent, able to differentiate into any cell type, opened up exciting possibilities. Reprogrammed cells — called induced pluripotent stem (iPS) cells — should have great potential in regenerative medicine, but most current methods of producing them involve viral gene delivery that could cause abnormalities in the induced cells. Two groups in this issue report on a collaboration that has succeeded in producing pluripotency in human cells without using viral vectors. Stable iPS cells were produced in both human and mouse fibroblasts using virus-derived 2A peptide sequences to create a multicistronic vector incorporating the reprogramming factors, delivered to the cell by the piggyBac transposon vector. The 2A-linked reprogramming factors, not required in the established iPS cell lines, were then removed. This paper presents a technique to reprogram mouse and human fibroblasts to induce pluripotency. The authors show that the transgene can be removed once reprogramming has been achieved with a piggyBac transposon (described in an accompanying paper; doi:10.1038/nature07863). This system minimizes genome modification in induced pluripotent stem cells and enables complete elimination of exogenous reprogramming factors. Reprogramming of somatic cells to pluripotency, thereby creating induced pluripotent stem (iPS) cells, promises to transform regenerative medicine. Most instances of direct reprogramming have been achieved by forced expression of defined factors using multiple viral vectors 1 , 2 , 3 , 4 , 5 , 6 , 7 . However, such iPS cells contain a large number of viral vector integrations 1 , 8 , any one of which could cause unpredictable genetic dysfunction. Whereas c-Myc is dispensable for reprogramming 9 , 10 , complete elimination of the other exogenous factors is also desired because ectopic expression of either Oct4 (also known as Pou5f1) or Klf4 can induce dysplasia 11 , 12 . Two transient transfection-reprogramming methods have been published to address this issue 13 , 14 . However, the efficiency of both approaches is extremely low, and neither has been applied successfully to human cells so far. Here we show that non-viral transfection of a single multiprotein expression vector, which comprises the coding sequences of c- Myc , Klf4 , Oct4 and Sox2 linked with 2A peptides, can reprogram both mouse and human fibroblasts. Moreover, the transgene can be removed once reprogramming has been achieved. iPS cells produced with this non-viral vector show robust expression of pluripotency markers, indicating a reprogrammed state confirmed functionally by in vitro differentiation assays and formation of adult chimaeric mice. When the single-vector reprogramming system was combined with a piggyBac transposon 15 , 16 , we succeeded in establishing reprogrammed human cell lines from embryonic fibroblasts with robust expression of pluripotency markers. This system minimizes genome modification in iPS cells and enables complete elimination of exogenous reprogramming factors, efficiently providing iPS cells that are applicable to regenerative medicine, drug screening and the establishment of disease models.
piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells
Virus-free iPS cells The discovery that non-germline adult cells can be reprogrammed to become pluripotent, able to differentiate into any cell type, opened up exciting possibilities. Reprogrammed cells — called induced pluripotent stem (iPS) cells — should have great potential in regenerative medicine, but most current methods of producing them involve viral gene delivery that could cause abnormalities in the induced cells. Two groups in this issue report on a collaboration that has succeeded in producing pluripotency in human cells without using viral vectors. Stable iPS cells were produced in both human and mouse fibroblasts using virus-derived 2A peptide sequences to create a multicistronic vector incorporating the reprogramming factors, delivered to the cell by the piggyBac transposon vector. The 2A-linked reprogramming factors, not required in the established iPS cell lines, were then removed. This paper uses the piggyBac transposon to generate stable iPS cells from human and mouse fibroblasts; the individual piggyBac insertions can then be removed from established iPS cell lines. The study also demonstrates removal of reprogramming factors joined with 2A sequences (described in an accompanying paper; doi:10.1038/nature07864) delivered by a single transposon from murine iPS lines. Transgenic expression of just four defined transcription factors (c-Myc, Klf4, Oct4 and Sox2) is sufficient to reprogram somatic cells to a pluripotent state 1 , 2 , 3 , 4 . The resulting induced pluripotent stem (iPS) cells resemble embryonic stem cells in their properties and potential to differentiate into a spectrum of adult cell types. Current reprogramming strategies involve retroviral 1 , lentiviral 5 , adenoviral 6 and plasmid 7 transfection to deliver reprogramming factor transgenes. Although the latter two methods are transient and minimize the potential for insertion mutagenesis, they are currently limited by diminished reprogramming efficiencies. piggyBac (PB) transposition is host-factor independent, and has recently been demonstrated to be functional in various human and mouse cell lines 8 , 9 , 10 , 11 . The PB transposon/transposase system requires only the inverted terminal repeats flanking a transgene and transient expression of the transposase enzyme to catalyse insertion or excision events 12 . Here we demonstrate successful and efficient reprogramming of murine and human embryonic fibroblasts using doxycycline-inducible transcription factors delivered by PB transposition 13 . Stable iPS cells thus generated express characteristic pluripotency markers and succeed in a series of rigorous differentiation assays. By taking advantage of the natural propensity of the PB system for seamless excision 12 , we show that the individual PB insertions can be removed from established iPS cell lines, providing an invaluable tool for discovery. In addition, we have demonstrated the traceless removal of reprogramming factors joined with viral 2A sequences 14 delivered by a single transposon from murine iPS lines. We anticipate that the unique properties of this virus-independent simplification of iPS cell production will accelerate this field further towards full exploration of the reprogramming process and future cell-based therapies.
Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage
The International Stem Cell Initiative compares 125 ethnically diverse human embryonic stem cell lines at early and late passage. Data on karotype, single-nucleotide polymorphisms and methylation shed light on how the cells adapt to long-term culture. The International Stem Cell Initiative analyzed 125 human embryonic stem (ES) cell lines and 11 induced pluripotent stem (iPS) cell lines, from 38 laboratories worldwide, for genetic changes occurring during culture. Most lines were analyzed at an early and late passage. Single-nucleotide polymorphism (SNP) analysis revealed that they included representatives of most major ethnic groups. Most lines remained karyotypically normal, but there was a progressive tendency to acquire changes on prolonged culture, commonly affecting chromosomes 1, 12, 17 and 20. DNA methylation patterns changed haphazardly with no link to time in culture. Structural variants, determined from the SNP arrays, also appeared sporadically. No common variants related to culture were observed on chromosomes 1, 12 and 17, but a minimal amplicon in chromosome 20q11.21, including three genes expressed in human ES cells, ID1 , BCL2L1 and HM13 , occurred in >20% of the lines. Of these genes, BCL2L1 is a strong candidate for driving culture adaptation of ES cells.
Linking a cell-division gene and a suicide gene to define and improve cell therapy safety
Human pluripotent cell lines hold enormous promise for the development of cell-based therapies. Safety, however, is a crucial prerequisite condition for clinical applications. Numerous groups have attempted to eliminate potentially harmful cells through the use of suicide genes 1 , but none has quantitatively defined the safety level of transplant therapies. Here, using genome-engineering strategies, we demonstrate the protection of a suicide system from inactivation in dividing cells. We created a transcriptional link between the suicide gene herpes simplex virus thymidine kinase ( HSV-TK ) and a cell-division gene ( CDK1 ); this combination is designated the safe-cell system. Furthermore, we used a mathematical model to quantify the safety level of the cell therapy as a function of the number of cells that is needed for the therapy and the type of genome editing that is performed. Even with the highly conservative estimates described here, we anticipate that our solution will rapidly accelerate the entry of cell-based medicine into the clinic. Introduction of a suicide gene together with a linked cell-division gene to generate a safe-cell system enables the selective elimination of proliferating cells after cell transplantation in mouse models of cell therapy.
“Agouti NOD”: identification of a CBA-derived Idd locus on Chromosome 7 and its use for chimera production with NOD embryonic stem cells
Penetrance of the complex of genes predisposing the nonobese diabetic (NOD) mouse to autoimmune diabetes is affected by the maternal environment. NOD.CBALs-Tyr(+)/Lt is an agouti-pigmented Chromosome 7 congenic stock of NOD/Lt mice produced as a resource for embryo transfer experiments to provide the necessary maternal factors and allow the easy identification of NOD (albino) embryo donor phenotype. CBcNO6/Lt, a recombinant congenic agouti stock already containing approximately 50% NOD genome, was used as the donor source of a wild-type CBA tyrosinase allele. When the incidence of diabetes was assessed after nine generations of backcrossing and one generation of sib-sib mating, significant reduction in diabetes development was observed. No difference in diabetes development was observed in Tyr/Tyr(c) heterozygotes, showing that protection was recessive. Analysis of diabetes progression in another NOD stock congenic for C57BL/6 alleles on Chromosome 7 linked to the glucose phosphate isomerase (Gpi1(b)) locus provided no protection, indicating that the diabetes resistance (Idd) gene was distal to 34 cM (D7Mit346). Approximately 5 cM of the distal congenic region overlaps a region from C57L previously associated with protection when homozygous. The delayed onset and reduced frequency of diabetes in the NOD.CBALs-Tyr(+)/Lt stock is an advantage when females of this stock are used as surrogate mothers in studies involving hysterectomy or embryo transfers. Indeed, a newly developed NOD embryonic stem (ES) cell line injected into NOD.CBALs- Tyr(+)/Lt blastocysts produced approximately 50% live-born mice, of which approximately 11% were chimeric. Presumably because of high genomic instability, no germline transmission was observed.