Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
205 result(s) for "Miles, Evan S."
Sort by:
The Decaying Near‐Surface Boundary Layer of a Retreating Alpine Glacier
The presence of a developed boundary layer decouples a glacier's response from ambient conditions, suggesting that sensitivity to climate change is increased by glacier retreat. To test this hypothesis, we explore six years of distributed meteorological data on a small Swiss glacier in the period 2001–2022. Large glacier fragmentation has occurred since 2001 (−35% area change up to 2022) coinciding with notable frontal retreat, an observed switch from down‐glacier katabatic to up‐glacier valley winds and an increased sensitivity (ratio) of on‐glacier to off‐glacier temperature. As the glacier ceases to develop density‐driven katabatic winds, sensible heat fluxes on the glacier are increasingly determined by the conditions occurring outside the boundary layer of the glacier, sealing the glacier's demise as the climate continues to warm and experience an increased frequency of extreme summers. Plain Language Summary Down‐glacier winds promote a unique micro‐climate, maintaining relatively lower temperatures over the surface of mountain glaciers. Using six years of meteorological data in the period 2001–2022, we observe increases in the relative changes of above‐ice air temperatures compared to temperatures outside the glacier. As the glacier ceases to develop its own micro‐climate, warmer winds generated by heated valley slopes increasingly control the amount of heat transfer to melt glacier ice. This work offers new observational evidence that suggests that, as glaciers continue to shrink and fragment, they becoming increasingly sensitive to future climate warming. Key Points On‐glacier air temperatures have become more sensitive to ambient temperatures in a warming climate Up‐valley winds have increased >20% between 2001 and 2021, making sensible heat fluxes more dependent on conditions outside the glacier The decay of the katabatic system due to glacier retreat indicates a nonlinear sensitivity of the glacier to continued warming
Supraglacial ice cliffs and ponds on debris-covered glaciers: spatio-temporal distribution and characteristics
Ice cliffs and ponds on debris-covered glaciers have received increased attention due to their role in amplifying local melt. However, very few studies have looked at these features on the catchment scale to determine their patterns and changes in space and time. We have compiled a detailed inventory of cliffs and ponds in the Langtang catchment, central Himalaya, from six high-resolution satellite orthoimages and DEMs between 2006 and 2015, and a historic orthophoto from 1974. Cliffs cover between 1.4% (± 0.4%) in the dry and 3.4% (± 0.9%) in the wet seasons and ponds between 0.6% (± 0.1%) and 1.6% (± 0.3%) of the total debris-covered tongues. We find large variations between seasons, as cliffs and ponds tend to grow in the wetter monsoon period, but there is no obvious trend in total area over the study period. The inventory further shows that cliffs are predominately north-facing irrespective of the glacier flow direction. Both cliffs and ponds appear in higher densities several hundred metres from the terminus in areas where tributaries reach the main glacier tongue. On the largest glacier in the catchment ~10% of all cliffs and ponds persisted over nearly a decade.
Internal structure of a Himalayan debris-covered glacier revealed by borehole optical televiewing
Characterising the structures within glaciers can give unique insight into ice motion processes. On debris-covered glaciers, traditional structural glaciological mapping is challenging because the lower glacier is hidden by the supraglacial debris layer. Here, we use high-resolution optical televiewer (OPTV) image logs from four boreholes drilled into Khumbu Glacier, Nepal, to overcome this limitation and investigate englacial structural features within a Himalayan debris-covered glacier. The OPTV logs show structural features that are up to an order of magnitude thinner than those observed at the glacier surface and reveal five structural units: (I) primary stratification of ice; (II) debris-rich planes that conform with the primary stratification; (III) water-healed crevasse traces; (IV) healed crevasse traces; and (V) steeply dipping planes of basally derived fine sediment near the glacier terminus. The OPTV logs also reveal that the primary stratification both decreases in dip with depth (by up to 56° over 20 m) and rotates with depth (by up to 100° over 20 m) towards parallelism with the proximal lateral moraine. This transformation and the presence of relict layers of basally derived sediment raised into an englacial position – possibly involving thrusting – near the glacier's now stagnant terminus reveal a previously more dynamic glacier regime.
Contrasting patterns of change in snowline altitude across five Himalayan catchments
Seasonal snowmelt in High Mountain Asia is an important source of river discharge. Therefore, observation of the spatiotemporal variations in snow cover at catchment scales using high-resolution satellites is essential for understanding changes in water supply from headwater catchments. In this study, we adapt an algorithm to automatically detect the snowline altitude (SLA) using the Google Earth Engine platform with available high-resolution multispectral satellite archives that can be readily applied for areas of interest. Here, we applied and evaluated the tool to five glacierized watersheds across the Himalayas to quantify the changes in seasonal and annual snow cover over the past 21 years and analyze climate reanalysis data to assess the meteorological factors influencing the SLA. Our findings revealed substantial variations in the SLA among sites in terms of seasonal patterns, decadal trends, and meteorological controls. We identify positive trends in SLA in Hidden Valley (+11.9 m yr−1), Langtang (+14.4 m yr−1), and Rolwaling (+8.2 m yr−1) in the Nepalese Himalayas but a negative trend in Satopanth (−15.6 m yr−1) in the western Indian Himalayas and no significant trend in Parlung in southeastern Tibet. We suggest that the increase in SLA in Nepal was caused by warmer temperatures during the monsoon season, whereas the decrease in SLA in India was driven by increased winter snowfall and reduced monsoon snowmelt. By integrating the outcomes of these analyses, we found that long-term changes in SLA are primarily driven by shifts in the local climate, whereas seasonal variability may be influenced by geographic features in conjunction with climate.
Spatial, seasonal and interannual variability of supraglacial ponds in the Langtang Valley of Nepal, 1999–2013
Supraglacial ponds play a key role in absorbing atmospheric energy and directing it to the ice of debris-covered glaciers, but the spatial and temporal distribution of these features is not well documented. We analyse 172 Landsat TM/ETM+ scenes for the period 1999–2013 to identify thawed supraglacial ponds for the debris-covered tongues of five glaciers in the Langtang Valley of Nepal. We apply an advanced atmospheric correction routine (Landcor/6S) and use band ratio and image morphological techniques to identify ponds and validate our results with 2.5 m Cartosat-1 observations. We then characterize the spatial, seasonal and interannual patterns of ponds. We find high variability in pond incidence between glaciers (May–October means of 0.08–1.69% of debris area), with ponds most frequent in zones of low surface gradient and velocity. The ponds show pronounced seasonality, appearing in the pre-monsoon as snow melts, peaking at the monsoon onset at 2% of debris-covered area, then declining in the post-monsoon as ponds drain or freeze. Ponds are highly recurrent and persistent, with 40.5% of pond locations occurring for multiple years. Rather than a trend in pond cover over the study period, we find high interannual variability for each glacier after controlling for seasonality.
Future growth and decline of high mountain Asia's ice-dammed lakes and associated risk
Glaciers around the world are shrinking rapidly and will continue to do so in the next decades. Anticipating the consequences resulting from such glacier changes is key to design and implement adequate mitigation measures. Here, we focus on the future evolution of potential ice-dammed and supraglacial lakes in High Mountain Asia, as such lakes are responsible for the majority of glacier lake outburst floods in the region. We identify 11,129 potential lakes at present, with a total maximum volume of 2070 million m 3 . We find a strong correlation between large modelled lakes and historical outburst floods. By accounting for the evolution of glaciers under different climate change mitigation measures, we project that the number of potential ice-dammed lakes could increase by between 15 and 18% until 2080, with a concomitant 45–55% increase in their volume. Our findings thus suggest that a temporary increase of glacier lake outburst floods is to be expected in the coming decades.
Controls on Ice Cliff Distribution and Characteristics on Debris‐Covered Glaciers
Ice cliff distribution plays a major role in determining the melt of debris‐covered glaciers but its controls are largely unknown. We assembled a data set of 37,537 ice cliffs and determined their characteristics across 86 debris‐covered glaciers within High Mountain Asia (HMA). We find that 38.9% of the cliffs are stream‐influenced, 19.5% pond‐influenced and 19.7% are crevasse‐originated. Surface velocity is the main predictor of cliff distribution at both local and glacier scale, indicating its dependence on the dynamic state and hence evolution stage of debris‐covered glacier tongues. Supraglacial ponds contribute to maintaining cliffs in areas of thicker debris, but this is only possible if water accumulates at the surface. Overall, total cliff density decreases exponentially with debris thickness as soon as the debris layer reaches a thickness of over 10 cm. Plain Language Summary Debris‐covered glaciers are common throughout the world's mountain ranges and are characterized by the presence of steep ice cliffs among the debris‐covered ice. It is well‐known that the cliffs are responsible for a large portion of the melt of these glaciers but the controls on their formation, development and distribution across glaciers remains poorly understood. Novel mapping approaches combined with high‐resolution satellite and drone products enabled us to disentangle some of these controls and to show that the ice cliffs are generally formed and maintained by the surface hydrology (ponds or streams) or by the opening of crevasses. As a result, they depend both at the local and glacier scale on the dynamic state of the glaciers as well as the evolution stage of their debris cover. This provides a pathway to better represent their contribution to glacier melt in predictive glacier models. Key Points We derived an unprecedented data set of 37,537 ice cliffs and their characteristics across 86 debris‐covered glaciers in High Mountain Asia We find that 38.9% of the cliffs are stream‐influenced, 19.5% pond‐influenced and 19.7% are crevasse‐originated Ice cliff distribution can be predicted by velocity, as an indicator of the dynamics and state of evolution of debris‐covered glaciers
Polythermal structure of a Himalayan debris-covered glacier revealed by borehole thermometry
Runoff from high-elevation debris-covered glaciers represents a crucial water supply for millions of people in the Hindu Kush-Himalaya region, where peak water has already passed in places. Knowledge of glacier thermal regime is essential for predicting dynamic and geometric responses to mass balance change and determining subsurface drainage pathways, which ultimately influence proglacial discharge and hence downstream water availability. Yet, deep internal ice temperatures of these glaciers are unknown, making projections of their future response to climate change highly uncertain. Here, we show that the lower part of the ablation area of Khumbu Glacier, a high-elevation debris-covered glacier in Nepal, may contain ~56% temperate ice, with much of the colder shallow ice near to the melting-point temperature (within 0.8 °C). From boreholes drilled in the glacier’s ablation area, we measured a minimum ice temperature of −3.3 °C, and even the coldest ice we measured was 2 °C warmer than the mean annual air temperature. Our results indicate that high-elevation Himalayan glaciers are vulnerable to even minor atmospheric warming.
Glacial and geomorphic effects of a supraglacial lake drainage and outburst event, Everest region, Nepal Himalaya
A set of supraglacial ponds filled rapidly between April and July 2017 on Changri Shar Glacier in the Everest region of Nepal, coalescing into a ∼180 000 m2 lake before sudden and complete drainage through Changri Shar and Khumbu glaciers (15–17 July). We use PlanetScope and Pléiades satellite orthoimagery to document the system's evolution over its very short filling period and to assess the glacial and proglacial effects of the outburst flood. We also use high-resolution stereo digital elevation models (DEMs) to complete a detailed analysis of the event's glacial and geomorphic effects. Finally, we use discharge records at a stream gauge 4 km downstream to refine our interpretation of the chronology and magnitude of the outburst. We infer largely subsurface drainage through both of the glaciers located on its flow path, and efficient drainage through the lower portion of Khumbu Glacier. The drainage and subsequent outburst of 1.36±0.19×106 m3 of impounded water had a clear geomorphic impact on glacial and proglacial topography, including deep incision and landsliding along the Changri Nup proglacial stream, the collapse of shallow englacial conduits near the Khumbu terminus and extensive, enhanced bank erosion at least as far as 11 km downstream below Khumbu Glacier. These sudden changes destroyed major trails in three locations, demonstrating the potential hazard that short-lived, relatively small glacial lakes pose.