Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
52
result(s) for
"Miles, Timothy F."
Sort by:
Viral GPCR US28 can signal in response to chemokine agonists of nearly unlimited structural degeneracy
2018
Human cytomegalovirus has hijacked and evolved a human G-protein-coupled receptor into US28, which functions as a promiscuous chemokine 'sink’ to facilitate evasion of host immune responses. To probe the molecular basis of US28’s unique ligand cross-reactivity, we deep-sequenced CX3CL1 chemokine libraries selected on ‘molecular casts’ of the US28 active-state and find that US28 can engage thousands of distinct chemokine sequences, many of which elicit diverse signaling outcomes. The structure of a G-protein-biased CX3CL1-variant in complex with US28 revealed an entirely unique chemokine amino terminal peptide conformation and remodeled constellation of receptor-ligand interactions. Receptor signaling, however, is remarkably robust to mutational disruption of these interactions. Thus, US28 accommodates and functionally discriminates amongst highly degenerate chemokine sequences by sensing the steric bulk of the ligands, which distort both receptor extracellular loops and the walls of the ligand binding pocket to varying degrees, rather than requiring sequence-specific bonding chemistries for recognition and signaling.
Journal Article
Multiplexed Cre-dependent selection yields systemic AAVs for targeting distinct brain cell types
by
Jang, Min J.
,
Ding, Xiaozhe
,
Greenbaum, Alon
in
631/1647/334/1874/345
,
631/1647/338
,
631/378/1341
2020
Recombinant adeno-associated viruses (rAAVs) are efficient gene delivery vectors via intravenous delivery; however, natural serotypes display a finite set of tropisms. To expand their utility, we evolved AAV capsids to efficiently transduce specific cell types in adult mouse brains. Building upon our Cre-recombination-based AAV targeted evolution (CREATE) platform, we developed Multiplexed-CREATE (M-CREATE) to identify variants of interest in a given selection landscape through multiple positive and negative selection criteria. M-CREATE incorporates next-generation sequencing, synthetic library generation and a dedicated analysis pipeline. We have identified capsid variants that can transduce the central nervous system broadly, exhibit bias toward vascular cells and astrocytes, target neurons with greater specificity or cross the blood–brain barrier across diverse murine strains. Collectively, the M-CREATE methodology accelerates the discovery of capsids for use in neuroscience and gene-therapy applications.
M-CREATE is an in vivo screening strategy for identifying recombinant AAVs with desired tropism. The approach involves both positive and negative selection and yields vectors with diversified cell-type tropism that can cross the blood–brain barrier in adult mice across strains when delivered intravenously.
Journal Article
Intravenous gene transfer throughout the brain of infant Old World primates using AAV
2022
Adeno-associated viruses (AAVs) can enable robust and safe gene delivery to the mammalian central nervous system (CNS). While the scientific community has developed numerous neurotropic AAV variants for systemic gene-transfer to the rodent brain, there are few AAVs that efficiently access the CNS of higher order primates. We describe here AAV.CAP-Mac, an engineered AAV variant that enables systemic, brain-wide gene delivery in infants of two Old World primate species—the rhesus macaque (Macaca mulatta) and the green monkey (Chlorocebus sabaeus). We identified CAP-Mac using a multi-species selection strategy, initially screening our library in the adult common marmoset (Callithrix jacchus) and narrowing our pool of test-variants for another round of selection in infant macaques. In individual characterization, CAP-Mac robustly transduces human neurons in vitro and Old World primate neurons in vivo, where it targets all lobes of cortex, the cerebellum, and multiple subcortical regions of disease relevance. We use CAP-Mac for Brainbow-like multicolor labeling of macaque neurons throughout the brain, enabling morphological reconstruction of both medium spiny neurons and cortical pyramidal cells. Because of its broad distribution throughout the brain and high neuronal efficiency in infant Old World primates compared to AAV9, CAP-Mac shows promise for researchers and clinicians alike to unlock novel, noninvasive access to the brain for efficient gene transfer.
Preferential selection of viral escape mutants by CD8+ T cell ‘sieving’ of SIV reactivation from latency
by
Keele, Brandon F.
,
Schlub, Timothy E.
,
Cromer, Deborah
in
Animals
,
Anti-Retroviral Agents - pharmacology
,
Anti-Retroviral Agents - therapeutic use
2023
HIV rapidly rebounds after interruption of antiretroviral therapy (ART). HIV-specific CD8
+
T cells may act to prevent early events in viral reactivation. However, the presence of viral immune escape mutations may limit the effect of CD8
+
T cells on viral rebound. Here, we studied the impact of CD8 immune pressure on post-treatment rebound of barcoded SIVmac293M in 14 Mamu-A*01 positive rhesus macaques that initiated ART on day 14, and subsequently underwent two analytic treatment interruptions (ATIs). Rebound following the first ATI (seven months after ART initiation) was dominated by virus that retained the wild-type sequence at the Mamu-A*01 restricted Tat-SL8 epitope. By the end of the two-month treatment interruption, the replicating virus was predominantly escaped at the Tat-SL8 epitope. Animals reinitiated ART for 3 months prior to a second treatment interruption. Time-to-rebound and viral reactivation rate were significantly slower during the second treatment interruption compared to the first. Tat-SL8 escape mutants dominated early rebound during the second treatment interruption, despite the dominance of wild-type virus in the proviral reservoir. Furthermore, the escape mutations detected early in the second treatment interruption were well predicted by those replicating at the end of the first, indicating that escape mutant virus in the second interruption originated from the latent reservoir as opposed to evolving de novo post rebound. SL8-specific CD8
+
T cell levels in blood prior to the second interruption were marginally, but significantly, higher (median 0.73% vs 0.60%, p = 0.016). CD8
+
T cell depletion approximately 95 days after the second treatment interruption led to the reappearance of wild-type virus. This work suggests that CD8
+
T cells can actively suppress the rebound of wild-type virus, leading to the dominance of escape mutant virus after treatment interruption.
Journal Article
Immunogenicity of a DNA vaccine candidate for COVID-19
2020
The coronavirus family member, SARS-CoV-2 has been identified as the causal agent for the pandemic viral pneumonia disease, COVID-19. At this time, no vaccine is available to control further dissemination of the disease. We have previously engineered a synthetic DNA vaccine targeting the MERS coronavirus Spike (S) protein, the major surface antigen of coronaviruses, which is currently in clinical study. Here we build on this prior experience to generate a synthetic DNA-based vaccine candidate targeting SARS-CoV-2 S protein. The engineered construct, INO-4800, results in robust expression of the S protein in vitro. Following immunization of mice and guinea pigs with INO-4800 we measure antigen-specific T cell responses, functional antibodies which neutralize the SARS-CoV-2 infection and block Spike protein binding to the ACE2 receptor, and biodistribution of SARS-CoV-2 targeting antibodies to the lungs. This preliminary dataset identifies INO-4800 as a potential COVID-19 vaccine candidate, supporting further translational study.
There is currently no licensed SARS-CoV-2 vaccine. Here, the authors generate an optimized DNA vaccine candidate encoding the SARS-CoV-2 spike antigen, demonstrating induction of specific T cells and neutralizing antibody responses in mice and guinea pigs. These initial results support further development of this vaccine candidate.
Journal Article
Structural basis of quinolone inhibition of type IIA topoisomerases and target-mediated resistance
by
Wohlkonig, Alexandre
,
Bax, Benjamin D
,
Fosberry, Andrew P
in
631/326/252/22/1290
,
631/45/535
,
631/45/607/1165
2010
The structure of Moxifloxacin, a quinolone antibacterial, in complex with
Acinetobacter baumannii
topoisomerase IV and DNA now shows how the drug stacks between base pairs at the DNA cleavage site. Moxifloxacin contacts the protein through a non-catalytic Mg
2+
, and the structure gives insight into the mode of inhibition and possible basis of drug resistance.
Quinolone antibacterials have been used to treat bacterial infections for over 40 years. A crystal structure of moxifloxacin in complex with
Acinetobacter baumannii
topoisomerase IV now shows the wedge-shaped quinolone stacking between base pairs at the DNA cleavage site and binding conserved residues in the DNA cleavage domain through chelation of a noncatalytic magnesium ion. This provides a molecular basis for the quinolone inhibition mechanism, resistance mutations and invariant quinolone antibacterial structural features.
Journal Article
Dysphagia Care Across the Continuum: A Multidisciplinary Dysphagia Research Society Taskforce Report of Service-Delivery During the COVID-19 Global Pandemic
by
Langmore, Susan E
,
Riquelme, Luis F
,
Malandraki, Georgia A
in
Coronaviruses
,
COVID-19
,
Disease transmission
2021
At the time of writing this paper, there are over 11 million reported cases of COVID-19 worldwide. Health professionals involved in dysphagia care are impacted by the COVID-19 pandemic in their day-to-day practices. Otolaryngologists, gastroenterologists, rehabilitation specialists, and speech-language pathologists are subject to virus exposure due to their proximity to the aerodigestive tract and reliance on aerosol-generating procedures in swallow assessments and interventions. Across the globe, professional societies and specialty associations are issuing recommendations about which procedures to use, when to use them, and how to reduce the risk of COVID-19 transmission during their use. Balancing safety for self, patients, and the public while maintaining adequate evidence-based dysphagia practices has become a significant challenge. This paper provides current evidence on COVID-19 transmission during commonly used dysphagia practices and provides recommendations for protection while conducting these procedures. The paper summarizes current understanding of dysphagia in patients with COVID-19 and draws on evidence for dysphagia interventions that can be provided without in-person consults and close proximity procedures including dysphagia screening and telehealth.
Journal Article
Blueprinting extendable nanomaterials with standardized protein blocks
by
Courbet, Alexis
,
Bethel, Neville
,
Davila-Hernandez, Fatima A.
in
101/28
,
631/114/469
,
631/535/1258
2024
A wooden house frame consists of many different lumber pieces, but because of the regularity of these building blocks, the structure can be designed using straightforward geometrical principles. The design of multicomponent protein assemblies, in comparison, has been much more complex, largely owing to the irregular shapes of protein structures
1
. Here we describe extendable linear, curved and angled protein building blocks, as well as inter-block interactions, that conform to specified geometric standards; assemblies designed using these blocks inherit their extendability and regular interaction surfaces, enabling them to be expanded or contracted by varying the number of modules, and reinforced with secondary struts. Using X-ray crystallography and electron microscopy, we validate nanomaterial designs ranging from simple polygonal and circular oligomers that can be concentrically nested, up to large polyhedral nanocages and unbounded straight ‘train track’ assemblies with reconfigurable sizes and geometries that can be readily blueprinted. Because of the complexity of protein structures and sequence–structure relationships, it has not previously been possible to build up large protein assemblies by deliberate placement of protein backbones onto a blank three-dimensional canvas; the simplicity and geometric regularity of our design platform now enables construction of protein nanomaterials according to ‘back of an envelope’ architectural blueprints.
A study describes an approach using designed building blocks that are far more regular in geometry than natural proteins to construct modular multicomponent protein assemblies.
Journal Article
A record-based case–control study of natural background radiation and the incidence of childhood leukaemia and other cancers in Great Britain during 1980–2006
2013
We conducted a large record-based case–control study testing associations between childhood cancer and natural background radiation. Cases (27 447) born and diagnosed in Great Britain during 1980–2006 and matched cancer-free controls (36 793) were from the National Registry of Childhood Tumours. Radiation exposures were estimated for mother’s residence at the child’s birth from national databases, using the County District mean for gamma rays, and a predictive map based on domestic measurements grouped by geological boundaries for radon. There was 12% excess relative risk (ERR) (95% CI 3, 22; two-sided
P
=0.01) of childhood leukaemia per millisievert of cumulative red bone marrow dose from gamma radiation; the analogous association for radon was not significant, ERR 3% (95% CI −4, 11;
P
=0.35). Associations for other childhood cancers were not significant for either exposure. Excess risk was insensitive to adjustment for measures of socio-economic status. The statistically significant leukaemia risk reported in this reasonably powered study (power ∼50%) is consistent with high-dose rate predictions. Substantial bias is unlikely, and we cannot identify mechanisms by which confounding might plausibly account for the association, which we regard as likely to be causal. The study supports the extrapolation of high-dose rate risk models to protracted exposures at natural background exposure levels.
Journal Article
Genetic Dissection of Acute Ethanol Responsive Gene Networks in Prefrontal Cortex: Functional and Mechanistic Implications
by
Williams, Robert W.
,
Miles, Michael F.
,
Bruce, Nathan A.
in
Alcoholic beverages
,
Alcoholism
,
Analysis
2012
Individual differences in initial sensitivity to ethanol are strongly related to the heritable risk of alcoholism in humans. To elucidate key molecular networks that modulate ethanol sensitivity we performed the first systems genetics analysis of ethanol-responsive gene expression in brain regions of the mesocorticolimbic reward circuit (prefrontal cortex, nucleus accumbens, and ventral midbrain) across a highly diverse family of 27 isogenic mouse strains (BXD panel) before and after treatment with ethanol.
Acute ethanol altered the expression of ~2,750 genes in one or more regions and 400 transcripts were jointly modulated in all three. Ethanol-responsive gene networks were extracted with a powerful graph theoretical method that efficiently summarized ethanol's effects. These networks correlated with acute behavioral responses to ethanol and other drugs of abuse. As predicted, networks were heavily populated by genes controlling synaptic transmission and neuroplasticity. Several of the most densely interconnected network hubs, including Kcnma1 and Gsk3β, are known to influence behavioral or physiological responses to ethanol, validating our overall approach. Other major hub genes like Grm3, Pten and Nrg3 represent novel targets of ethanol effects. Networks were under strong genetic control by variants that we mapped to a small number of chromosomal loci. Using a novel combination of genetic, bioinformatic and network-based approaches, we identified high priority cis-regulatory candidate genes, including Scn1b, Gria1, Sncb and Nell2.
The ethanol-responsive gene networks identified here represent a previously uncharacterized intermediate phenotype between DNA variation and ethanol sensitivity in mice. Networks involved in synaptic transmission were strongly regulated by ethanol and could contribute to behavioral plasticity seen with chronic ethanol. Our novel finding that hub genes and a small number of loci exert major influence over the ethanol response of gene networks could have important implications for future studies regarding the mechanisms and treatment of alcohol use disorders.
Journal Article