Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
661
result(s) for
"Miller, Meredith"
Sort by:
Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40
2017
The mechanistic target of rapamycin complex 1 (mTORC1) controls cell growth and metabolism in response to nutrients, energy levels, and growth factors. It contains the atypical kinase mTOR and the RAPTOR subunit that binds to the Tor signalling sequence (TOS) motif of substrates and regulators. mTORC1 is activated by the small GTPase RHEB (Ras homologue enriched in brain) and inhibited by PRAS40. Here we present the 3.0 ångström cryo-electron microscopy structure of mTORC1 and the 3.4 ångström structure of activated RHEB–mTORC1. RHEB binds to mTOR distally from the kinase active site, yet causes a global conformational change that allosterically realigns active-site residues, accelerating catalysis. Cancer-associated hyperactivating mutations map to structural elements that maintain the inactive state, and we provide biochemical evidence that they mimic RHEB relieving auto-inhibition. We also present crystal structures of RAPTOR–TOS motif complexes that define the determinants of TOS recognition, of an mTOR FKBP12–rapamycin-binding (FRB) domain–substrate complex that establishes a second substrate-recruitment mechanism, and of a truncated mTOR–PRAS40 complex that reveals PRAS40 inhibits both substrate-recruitment sites. These findings help explain how mTORC1 selects its substrates, how its kinase activity is controlled, and how it is activated by cancer-associated mutations.
The cryo-electron microscopy and crystal structures of several mTORC1 complexes, and accompanying biochemical analyses, shed light on how mTORC1 is regulated and how cancer mutations lead to its hyperactivation.
mTORC1 structures shed light on function
Mechanistic target of rapamycin complex 1 (mTORC1) is a protein complex that is important for regulating cell growth and homeostasis and is aberrantly regulated in many diseases such as cancer, diabetes and neurodegeneration. Here, Nikola Pavletich and colleagues use cryo-electron microscopy and crystallography to determine the structures of several mTORC1 complexes. The structures and accompanying biochemical analysis provide mechanistic insights into how mTORC1 is allosterically activated by the GTPase RHEB, how it is inhibited by PRAS40, and how it recognizes substrates via the TOS motif. The findings also shed light on how cancer mutations lead to hyperactivation of mTORC1.
Journal Article
Serum metabolome analysis in hyperthyroid cats before and after radioactive iodine therapy
by
Loftus, John P.
,
Bennett, Lucinda L.
,
Peterson, Mark E.
in
Abnormalities
,
Animals
,
Biology and Life Sciences
2024
Hyperthyroidism is the most common feline endocrinopathy. In hyperthyroid humans, untargeted metabolomic analysis identified persistent metabolic derangements despite achieving a euthyroid state. Therefore, we sought to define the metabolome of hyperthyroid cats and identify ongoing metabolic changes after treatment. We prospectively compared privately-owned hyperthyroid cats (n = 7) admitted for radioactive iodine (I-131) treatment and euthyroid privately-owned control (CON) cats (n = 12). Serum samples were collected before (T0), 1-month (T1), and three months after (T3) I-131 therapy for untargeted metabolomic analysis by MS/MS. Hyperthyroid cats (T0) had a distinct metabolic signature with 277 significantly different metabolites than controls (70 increased, 207 decreased). After treatment, 66 (T1 vs. CON) and 64 (T3 vs. CON) metabolite differences persisted. Clustering and data reduction analysis revealed separate clustering of hyperthyroid (T0) and CON cats with intermediate phenotypes after treatment (T1 & T3). Mevalonate/mevalonolactone and creatine phosphate were candidate biomarkers with excellent discrimination between hyperthyroid and healthy cats. We found several metabolic derangements (e.g., decreased carnitine and α-tocopherol) do not entirely resolve after achieving a euthyroid state after treating hyperthyroid cats with I-131. Further investigation is warranted to determine diagnostic and therapeutic implications for candidate biomarkers and persistent metabolic abnormalities.
Journal Article
Accuracy and reliability of forensic handwriting comparisons
by
Eisenhart, Linda
,
Peters, Eugene M.
,
Smith, Michael A.
in
Applied Physical Sciences
,
Forensic science
,
Forensic Sciences - methods
2022
Forensic handwriting examination involves the comparison of writing samples by forensic document examiners (FDEs) to determine whether or not they were written by the same person. Here we report the results of a large-scale study conducted to assess the accuracy and reliability of handwriting comparison conclusions. Eighty-six practicing FDEs each conducted up to 100 handwriting comparisons, resulting in 7,196 conclusions on 180 distinct comparison sets, using a five-level conclusion scale. Erroneous “written by” conclusions (false positives) were reached in 3.1% of the nonmated comparisons, while 1.1% of the mated comparisons yielded erroneous “not written by” conclusions (false negatives). False positive rates were markedly higher for nonmated samples written by twins (8.7%) compared to nontwins (2.5%). Notable associations between training and performance were observed: FDEs with less than 2 y of formal training generally had higher error rates, but they also had higher true positive and true negative rates because they tended to provide more definitive conclusions; FDEs with at least 2 y of formal training were less likely to make definitive conclusions, but those definitive conclusions they made were more likely to be correct (higher positive predictive and negative predictive values).We did not observe any association between writing style (cursive vs. printing) and rates of errors or incorrect conclusions. This report also provides details on the repeatability and reproducibility of conclusions, and reports how conclusions are affected by the quantity of writing and the similarity of content.
Journal Article
PRMT1-dependent regulation of RNA metabolism and DNA damage response sustains pancreatic ductal adenocarcinoma
2021
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer that has remained clinically challenging to manage. Here we employ an RNAi-based in vivo functional genomics platform to determine epigenetic vulnerabilities across a panel of patient-derived PDAC models. Through this, we identify protein arginine methyltransferase 1 (PRMT1) as a critical dependency required for PDAC maintenance. Genetic and pharmacological studies validate the role of PRMT1 in maintaining PDAC growth. Mechanistically, using proteomic and transcriptomic analyses, we demonstrate that global inhibition of asymmetric arginine methylation impairs RNA metabolism, which includes RNA splicing, alternative polyadenylation, and transcription termination. This triggers a robust downregulation of multiple pathways involved in the DNA damage response, thereby promoting genomic instability and inhibiting tumor growth. Taken together, our data support PRMT1 as a compelling target in PDAC and informs a mechanism-based translational strategy for future therapeutic development.
Statement of significance
PDAC is a highly lethal cancer with limited therapeutic options. This study identified and characterized PRMT1-dependent regulation of RNA metabolism and coordination of key cellular processes required for PDAC tumor growth, defining a mechanism-based translational hypothesis for PRMT1 inhibitors.
Arginine methylation by PRMTs is dysregulated in cancer. Here, the authors use functional genomics screens and identify PRMT1 as a vulnerability in pancreatic ductal adenocarcinoma, and further show that PRMT1 regulates RNA metabolism and coordinates expression of genes in cell cycle progression, maintaining genomic stability and tumour growth.
Journal Article
Randomized controlled trial of hydrolyzed fish diets in dogs with chronic enteropathy
2023
Background
The role of diet in the pathogenesis and treatment of chronic enteropathies (CE) in dogs is unresolved.
Objectives
To compare the ability of diets composed of hydrolyzed fish, rice starch, and fish oil without (HF) or with prebiotics, turmeric, and high cobalamin (HF+) against a limited ingredient diet containing mixed nonhydrolyzed antigens and oils (control) to resolve clinical signs and maintain serum cobalamin and folate concentrations in dogs with nonprotein losing CE (non‐PLE). To determine the ability of hydrolyzed fish diets to support recovery and remission in dogs with PLE.
Animals
Thirty‐one client‐owned dogs with CE: 23 non‐PLE, 8 PLE.
Methods
Randomized, blinded, controlled trial. Diets were fed for 2 weeks; responders continued for 12 weeks. Nonresponders were crossed over to another diet for 12 weeks. Response was determined by standardized clinical evaluation with long‐term follow‐up at 26 weeks. Concurrent medications were allowed in PLE.
Results
Nineteen of 23 (83%; 95% confidence interval [CI], 60%‐94%) non‐PLE CE responded clinically to their initial diet, with no difference between diets (P > .05). Four nonresponders responded to another diet, with sustained remission of 18/18 (100%; 95%CI, 78%‐100%) at 26 weeks. Serum cobalamin concentration was increased (P < .05) and maintained by diet. Serum folate concentration decreased posttreatment (P < .05) but was restored by dietary supplementation. Hydrolyzed fish diets supported weight gain, serum albumin concentration, and recovery (P < .05) in dogs with PLE.
Conclusions and Clinical Importance
Changing diet, independent of antigen restriction or supplemental ingredients, induced long‐term remission in dogs with non‐PLE CE. Serum cobalamin and folate concentrations were maintained by diet. Hydrolyzed fish diets supported clinical recovery and remission in PLE.
Journal Article
A workflow for expanding DNA barcode reference libraries through ‘museum harvesting’ of natural history collections
2023
Natural history collections are the physical repositories of our knowledge on species, the entities of biodiversity. Making this knowledge accessible to society – through, for example, digitisation or the construction of a validated, global DNA barcode library – is of crucial importance. To this end, we developed and streamlined a workflow for ‘museum harvesting’ of authoritatively identified Diptera specimens from the Smithsonian Institution’s National Museum of Natural History. Our detailed workflow includes both on-site and off-site processing through specimen selection, labelling, imaging, tissue sampling, databasing and DNA barcoding. This approach was tested by harvesting and DNA barcoding 941 voucher specimens, representing 32 families, 819 genera and 695 identified species collected from 100 countries. We recovered 867 sequences (> 0 base pairs) with a sequencing success of 88.8% (727 of 819 sequenced genera gained a barcode > 300 base pairs). While Sanger-based methods were more effective for recently-collected specimens, the methods employing next-generation sequencing recovered barcodes for specimens over a century old. The utility of the newly-generated reference barcodes is demonstrated by the subsequent taxonomic assignment of nearly 5000 specimen records in the Barcode of Life Data Systems.
Journal Article
Analytical validation of a multi-cancer early detection test with cancer signal origin using a cell-free DNA–based targeted methylation assay
2023
The analytical validation is reported for a targeted methylation-based cell-free DNA multi-cancer early detection test designed to detect cancer and predict the cancer signal origin (tissue of origin). A machine-learning classifier was used to analyze the methylation patterns of >10
5
genomic targets covering >1 million methylation sites. Analytical sensitivity (limit of detection [95% probability]) was characterized with respect to tumor content by expected variant allele frequency and was determined to be 0.07%-0.17% across five tumor cases and 0.51% for the lymphoid neoplasm case. Test specificity was 99.3% (95% confidence interval, 98.6–99.7%). In the reproducibility and repeatability study, results were consistent in 31/34 (91.2%) pairs with cancer and 17/17 (100%) pairs without cancer; between runs, results were concordant for 129/133 (97.0%) cancer and 37/37 (100%) non-cancer sample pairs. Across 3- to 100-ng input levels of cell-free DNA, cancer was detected in 157/182 (86.3%) cancer samples but not in any of the 62 non-cancer samples. In input titration tests, cancer signal origin was correctly predicted in all tumor samples detected as cancer. No cross-contamination events were observed. No potential interferent (hemoglobin, bilirubin, triglycerides, genomic DNA) affected performance. The results of this analytical validation study support continued clinical development of a targeted methylation cell-free DNA multi-cancer early detection test.
Journal Article
Small-molecule inhibitors of integrin α₂β₁ that prevent pathological thrombus formation via an allosteric mechanism
2009
There is a grave need for safer antiplatelet therapeutics to prevent heart attack and stroke. Agents targeting the interaction of platelets with the diseased vessel wall could impact vascular disease with minimal effects on normal hemostasis. We targeted integrin α₂β₁, a collagen receptor, because its overexpression is associated with pathological clot formation whereas its absence does not cause severe bleeding. Structure-activity studies led to highly potent and selective small-molecule inhibitors. Responses of integrin α₂β₁ mutants to these compounds are consistent with a computational model of their mode of inhibition and shed light on the activation mechanism of I-domain-containing integrins. A potent compound was proven efficacious in an animal model of arterial thrombosis, which demonstrates in vivo efficacy for inhibition of this platelet receptor. These results suggest that targeting integrin α₂β₁ could be a potentially safe, effective approach to long-term therapy for cardiovascular disease.
Journal Article
Enhancing DNA barcode reference libraries by harvesting terrestrial arthropods at the Smithsonian's National Museum of Natural History
2023
The use of DNA barcoding has revolutionised biodiversity science, but its application depends on the existence of comprehensive and reliable reference libraries. For many poorly known taxa, such reference sequences are missing even at higher-level taxonomic scales. We harvested the collections of the Smithsonian’s National Museum of Natural History (USNM) to generate DNA barcoding sequences for genera of terrestrial arthropods previously not recorded in one or more major public sequence databases. Our workflow used a mix of Sanger and Next-Generation Sequencing (NGS) approaches to maximise sequence recovery while ensuring affordable cost. In total, COI sequences were obtained for 5,686 specimens belonging to 3,737 determined species in 3,886 genera and 205 families distributed in 137 countries. Success rates varied widely according to collection data and focal taxon. NGS helped recover sequences of specimens that failed a previous run of Sanger sequencing. Success rates and the optimal balance between Sanger and NGS are the most important drivers to maximise output and minimise cost in future projects. The corresponding sequence and taxonomic data can be accessed through the Barcode of Life Data System, GenBank, the Global Biodiversity Information Facility, the Global Genome Biodiversity Network Data Portal and the NMNH data portal.
Journal Article