Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
740 result(s) for "Miller, Webb"
Sort by:
Giraffe genome sequence reveals clues to its unique morphology and physiology
The origins of giraffe’s imposing stature and associated cardiovascular adaptations are unknown. Okapi, which lacks these unique features, is giraffe’s closest relative and provides a useful comparison, to identify genetic variation underlying giraffe’s long neck and cardiovascular system. The genomes of giraffe and okapi were sequenced, and through comparative analyses genes and pathways were identified that exhibit unique genetic changes and likely contribute to giraffe’s unique features. Some of these genes are in the HOX, NOTCH and FGF signalling pathways, which regulate both skeletal and cardiovascular development, suggesting that giraffe’s stature and cardiovascular adaptations evolved in parallel through changes in a small number of genes. Mitochondrial metabolism and volatile fatty acids transport genes are also evolutionarily diverged in giraffe and may be related to its unusual diet that includes toxic plants. Unexpectedly, substantial evolutionary changes have occurred in giraffe and okapi in double-strand break repair and centrosome functions. Giraffe’s unique anatomy and physiology include its stature and associated cardiovascular adaptation. Here, Douglas Cavener and colleagues provide de novo genome assemblies of giraffe and its closest relative okapi and provide comparative analyses to infer insights into evolution and adaptation.
Polar and brown bear genomes reveal ancient admixture and demographic footprints of past climate change
Polar bears (PBs) are superbly adapted to the extreme Arctic environment and have become emblematic of the threat to biodiversity from global climate change. Their divergence from the lower-latitude brown bear provides a textbook example of rapid evolution of distinct phenotypes. However, limited mitochondrial and nuclear DNA evidence conflicts in the timing of PB origin as well as placement of the species within versus sister to the brown bear lineage. We gathered extensive genomic sequence data from contemporary polar, brown, and American black bear samples, in addition to a 130,000- to 110,000-y old PB, to examine this problem from a genome-wide perspective. Nuclear DNA markers reflect a species tree consistent with expectation, showing polar and brown bears to be sister species. However, for the enigmatic brown bears native to Alaska's Alexander Archipelago, we estimate that not only their mitochondrial genome, but also 5–10% of their nuclear genome, is most closely related to PBs, indicating ancient admixture between the two species. Explicit admixture analyses are consistent with ancient splits among PBs, brown bears and black bears that were later followed by occasional admixture. We also provide paleodemographic estimates that suggest bear evolution has tracked key climate events, and that PB in particular experienced a prolonged and dramatic decline in its effective population size during the last ca. 500,000 years. We demonstrate that brown bears and PBs have had sufficiently independent evolutionary histories over the last 4–5 million years to leave imprints in the PB nuclear genome that likely are associated with ecological adaptation to the Arctic environment.
Evolution's Cauldron: Duplication, Deletion, and Rearrangement in the Mouse and Human Genomes
This study examines genomic duplications, deletions, and rearrangements that have happened at scales ranging from a single base to complete chromosomes by comparing the mouse and human genomes. From whole-genome sequence alignments, 344 large (>100-kb) blocks of conserved synteny are evident, but these are further fragmented by smaller-scale evolutionary events. Excluding transposon insertions, on average in each megabase of genomic alignment we observe two inversions, 17 duplications (five tandem or nearly tandem), seven transpositions, and 200 deletions of 100 bases or more. This includes 160 inversions and 75 duplications or transpositions of length >100 kb. The frequencies of these smaller events are not substantially higher in finished portions in the assembly. Many of the smaller transpositions are processed pseudogenes; we define a \"syntenic\" subset of the alignments that excludes these and other small-scale transpositions. These alignments provide evidence that ≈2% of the genes in the human/mouse common ancestor have been deleted or partially deleted in the mouse. There also appears to be slightly less nontransposon-induced genome duplication in the mouse than in the human lineage. Although some of the events we detect are possibly due to misassemblies or missing data in the current genome sequence or to the limitations of our methods, most are likely to represent genuine evolutionary events. To make these observations, we developed new alignment techniques that can handle large gaps in a robust fashion and discriminate between orthologous and paralogous alignments.
Comparison of Sequencing Platforms for Single Nucleotide Variant Calls in a Human Sample
Next-generation sequencings platforms coupled with advanced bioinformatic tools enable re-sequencing of the human genome at high-speed and large cost savings. We compare sequencing platforms from Roche/454(GS FLX), Illumina/HiSeq (HiSeq 2000), and Life Technologies/SOLiD (SOLiD 3 ECC) for their ability to identify single nucleotide substitutions in whole genome sequences from the same human sample. We report on significant GC-related bias observed in the data sequenced on Illumina and SOLiD platforms. The differences in the variant calls were investigated with regards to coverage, and sequencing error. Some of the variants called by only one or two of the platforms were experimentally tested using mass spectrometry; a method that is independent of DNA sequencing. We establish several causes why variants remained unreported, specific to each platform. We report the indel called using the three sequencing technologies and from the obtained results we conclude that sequencing human genomes with more than a single platform and multiple libraries is beneficial when high level of accuracy is required.
Genetic diversity and population structure of the endangered marsupial Sarcophilus harrisii (Tasmanian devil)
The Tasmanian devil (Sarcophilus harrisii) is threatened with extinction because of a contagious cancer known as Devil Facial Tumor Disease. The inability to mount an immune response and to reject these tumors might be caused by a lack of genetic diversity within a dwindling population. Here we report a whole-genome analysis of two animals originating from extreme northwest and southeast Tasmania, the maximal geographic spread, together with the genome from a tumor taken from one of them. A 3.3-Gb de novo assembly of the sequence data from two complementary next-generation sequencing platforms was used to identify 1 million polymorphic genomic positions, roughly one-quarter of the number observed between two genetically distant human genomes. Analysis of 14 complete mitochondrial genomes from current and museum specimens, as well as mitochondrial and nuclear SNP markers in 175 animals, suggests that the observed low genetic diversity in today's population preceded the Devil Facial Tumor Disease disease outbreak by at least 100 y. Using a genetically characterized breeding stock based on the genome sequence will enable preservation of the extant genetic diversity in future Tasmanian devil populations.
Identification of indels in next-generation sequencing data
Background The discovery and mapping of genomic variants is an essential step in most analysis done using sequencing reads. There are a number of mature software packages and associated pipelines that can identify single nucleotide polymorphisms (SNPs) with a high degree of concordance. However, the same cannot be said for tools that are used to identify the other types of variants. Indels represent the second most frequent class of variants in the human genome, after single nucleotide polymorphisms. The reliable detection of indels is still a challenging problem, especially for variants that are longer than a few bases. Results We have developed a set of algorithms and heuristics collectively called indelMINER to identify indels from whole genome resequencing datasets using paired-end reads. indelMINER uses a split-read approach to identify the precise breakpoints for indels of size less than a user specified threshold, and supplements that with a paired-end approach to identify larger variants that are frequently missed with the split-read approach. We use simulated and real datasets to show that an implementation of the algorithm performs favorably when compared to several existing tools. Conclusions indelMINER can be used effectively to identify indels in whole-genome resequencing projects. The output is provided in the VCF format along with additional information about the variant, including information about its presence or absence in another sample. The source code and documentation for indelMINER can be freely downloaded from www.bx.psu.edu/miller_lab/indelMINER.tar.gz .
Identification and Classification of Conserved RNA Secondary Structures in the Human Genome
The discoveries of microRNAs and riboswitches, among others, have shown functional RNAs to be biologically more important and genomically more prevalent than previously anticipated. We have developed a general comparative genomics method based on phylogenetic stochastic context-free grammars for identifying functional RNAs encoded in the human genome and used it to survey an eight-way genome-wide alignment of the human, chimpanzee, mouse, rat, dog, chicken, zebra-fish, and puffer-fish genomes for deeply conserved functional RNAs. At a loose threshold for acceptance, this search resulted in a set of 48,479 candidate RNA structures. This screen finds a large number of known functional RNAs, including 195 miRNAs, 62 histone 3'UTR stem loops, and various types of known genetic recoding elements. Among the highest-scoring new predictions are 169 new miRNA candidates, as well as new candidate selenocysteine insertion sites, RNA editing hairpins, RNAs involved in transcript auto regulation, and many folds that form singletons or small functional RNA families of completely unknown function. While the rate of false positives in the overall set is difficult to estimate and is likely to be substantial, the results nevertheless provide evidence for many new human functional RNAs and present specific predictions to facilitate their further characterization.
Molecular and Genomic Data Identify the Closest Living Relative of Primates
A full understanding of primate morphological and genomic evolution requires the identification of their closest living relative. In order to resolve the ancestral relationships among primates and their closest relatives, we searched multispecies genome alignments for phylogenetically informative rare genomic changes within the superordinal group Euarchonta, which includes the orders Primates, Dermoptera (colugos), and Scandentia (treeshrews). We also constructed phylogenetic trees from 14 kilobases of nuclear genes for representatives from most major primate lineages, both extant colugos, and multiple treeshrews, including the pentail treeshrew, Ptilocercus lowii, the only living member of the family Ptilocercidae. A relaxed molecular clock analysis including Ptilocercus suggests that treeshrews arose approximately 63 million years ago. Our data show that colugos are the closest living relatives of primates and indicate that their divergence occurred in the Cretaceous.
Metagenomics to Paleogenomics: Large-Scale Sequencing of Mammoth DNA
We sequenced 28 million base pairs of DNA in a metagenomics approach, using a woolly mammoth (Mammuthus primigenius) sample from Siberia. As a result of exceptional sample preservation and the use of a recently developed emulsion polymerase chain reaction and pyrosequencing technique, 13 million base pairs (45.4%) of the sequencing reads were identified as mammoth DNA. Sequence identity between our data and African elephant (Loxodonta africana) was 98.55%, consistent with a paleontologically based divergence date of 5 to 6 million years. The sample includes a surprisingly small diversity of environmental DNAs. The high percentage of endogenous DNA recoverable from this single mammoth would allow for completion of its genome, unleashing the field of paleogenomics.