Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
16
result(s) for
"Min, Byeng-Ryel"
Sort by:
Enteric Methane Emissions and Animal Performance in Dairy and Beef Cattle Production: Strategies, Opportunities, and Impact of Reducing Emissions
by
Min, Byeng-Ryel
,
Jung, Hyunjung
,
Lee, Seul
in
Animal lactation
,
average daily gain
,
Beef cattle
2022
Enteric methane (CH4) emissions produced by microbial fermentation in the rumen resulting in the emission of greenhouse gases (GHG) into the atmosphere. The GHG emissions reduction from the livestock industry can be attained by increasing production efficiency and improving feed efficiency, by lowering the emission intensity of production, or by combining the two. In this work, information was compiled from peer-reviewed studies to analyze CH4 emissions calculated per unit of milk production, energy-corrected milk (ECM), average daily gain (ADG), dry matter intake (DMI), and gross energy intake (GEI), and related emissions to rumen fermentation profiles (volatile fatty acids [VFA], hydrogen [H2]) and microflora activities in the rumen of beef and dairy cattle. For dairy cattle, there was a positive correlation (p < 0.001) between CH4 emissions and DMI (R2 = 0.44), milk production (R2 = 0.37; p < 0.001), ECM (R2 = 0.46), GEI (R2 = 0.50), and acetate/propionate (A/P) ratio (R2 = 0.45). For beef cattle, CH4 emissions were positively correlated (p < 0.05–0.001) with DMI (R2 = 0.37) and GEI (R2 = 0.74). Additionally, the ADG (R2 = 0.19; p < 0.01) and A/P ratio (R2 = 0.15; p < 0.05) were significantly associated with CH4 emission in beef steers. This information may lead to cost-effective methods to reduce enteric CH4 production from cattle. We conclude that enteric CH4 emissions per unit of ECM, GEI, and ADG, as well as rumen fermentation profiles, show great potential for estimating enteric CH4 emissions.
Journal Article
The effects of tannins-containing ground pine bark diet upon nutrient digestion, nitrogen balance, and mineral retention in meat goats
by
Ramsay, Aina
,
Terrill, Thomas
,
Solaiman, Sandra
in
acid detergent fiber
,
Agriculture
,
Animal Genetics and Genomics
2015
Background: Pine bark is a rich source of phytochemical compounds including tannins, phenolic acids, anthocyanins, and fatty acids. These phytochemicals have potential to significantly impact on animal health and animal production. The goal of this work is to measure the effects of tannins in ground pine bark as a partial feed replacement on feed intake, dietary apparent digestibility, nitrogen balance, and mineral retention in meat goats. Results: Eighteen Kiko cross goats (initial BW = 31.8 ± 1.49 kg) were randomly assigned to three treatment groups (n = 6). Dietary treatments were tested: control (0 % pine bark powder (PB) and 30 % wheat straw (WS)); ] 5 % PB and 15 % WS, and 30 % PB and 0 % WS. Although dry matter (DM) intake and digestibility were not affected (P〉 0.10) by feeding PB, neutral detergent fiber (linear; P= 0.01), acid detergent fiber (linear; P= 0.001) and lignin digestibility (linear; P= 0.01) decreased, and crude protein (CP) digestibility tended to decrease (P=0.09) as PB increased in the diet, apparent retention of Ca (P= 0.09), P (P=0.03), Mg (P= 0.01), Mn (P= 0.01), Zn (P= 0.01) and Fe (P= 0.09) also increased linearly. Nitrogen intake and fecal N excretion were not affected (P〉 0.05) by addition of PB in the diet, but N balance in the body was quadratically increased (P〈 0.01) in the 15 % PB diet compared to other diets. This may be due to more rumen escape protein and less excreted N in the urine with the 15 % PB diet. The study showed that a moderate level of tannin-containing pine bark supplementation could improve gastrointestinal nitrogen balance with the aim of improving animal performance. Conclusion: These results suggest that tannin-containing PB has negative impact on fiber, lignin, and protein digestibility, but positively impacted on N-balance.
Journal Article
Potential role of rumen microbiota in altering average daily gain and feed efficiency in meat goats fed simple and mixed pastures using bacterial tag-encoded FLX amplicon pyrosequencing1
2019
Abstract
Cost-effective and feasible production system of meat goats requires that grazed forages are converted to profitable goat meat product. However, there are studies as how altering forage type influences ruminal fermentation parameters and animal growth performance, and interact with microbiota in meat goats. Our objective for current study was to examine whether the comparative abundance of the Bacteroidetes (B) and Firmicutes (F) bacterial phyla in meat goats fed simple and mixed forages influenced average daily gain (ADG) and rumen fermentation parameters. In the present study, a molecular approach, bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) was applied to accomplish diversity analyses of rumen bacterial populations. Thirty-six Kiko-cross growing meat goats (body weight (BW) = 27.7 ± 2.83 kg) at approximately 7 mo of age were used in this study. Animals were randomly allocated to 3 pasture treatment groups (n = 12) as follows: 1) bermudagrass pasture (BG; Cynodon dactylon), 2) sunn hemp forage (SH; Crotalaria juncea), and 3) BG + SH forage combinations. There were 2 replicates per treatment and animals grazed these pastures for 45 d. Results indicated that treatments had similar initial BW, but final BW and ADG were higher (P < 0.01) for SH and BG + SH combinations than for BG alone. Animal ADG and rumen fermentation (acetate to propionate; A/P ratios) were highly correlated with the abundance of various bacterial populations within the rumen microbiome. There were linear decreases in percentage of Bacteroidetes (R2 = −0.84; P < 0.05) associated with decreasing ADG. In contrast, increased ADG was linearly associated with higher percentages of Firmicutes (R2 = 0.79; P < 0.05), F/B ratios (R2 = 0.88; P = 0.07), total VFA (R2 = 0.45; P < 0.05), and lower A/P ratio (R2 = −0.72; P < 0.01). This suggests that the substrates (diets) and bacterial community have the role in adapting host biological parameters in meat goats. The abundance examination of both Bacteroidetes and Firmicutes will be useful for exploring the structure of gut microbiota as an estimate of animal performance.
Journal Article
Malted Barley as a Potential Feed Supplementation for the Reduction of Enteric Methane Emissions, Rumen Digestibility, and Microbiome Community Changes in Laboratory Conditions
2025
Three sets of in vitro rumen fermentation experiments were conducted to determine the effects of diets that included malted barley (MB) and basal diets (grain- and forage-based) on the in vitro gas production, greenhouse gas (GHG) emissions, rumen fermentation profiles, and microbiome changes in the rumen when supplemented with feedlot or dairy rations. The first experiment (Exp. 1) was conducted to evaluate the effects of various levels of MB (0% [referred to as a control], 10%, 20%, and 30%, as-fed basis) supplemented with a grain-based diet in a feedlot ration (2.5 g/bottle) after 48 h ruminal incubation on the in vitro gas production, GHG emissions, and rumen fermentation rate. The second two sets of in vitro experiments (Exp. 2a, b) were conducted to determine (1) the effects of linear dose levels of malted barley (MB; 0%, 10%, 20%, 30%, and 40% as-fed) with two different basal diets (grain-based and forage-based) and (2) the effects of different sources of MB (control, Korean, Canadian, and the USA; 30% MB, as-fed) in a dairy ration after 24 h incubation on in vitro gas production, rumen fermentation profiles, GHG emissions (methane [CH4] and nitrous oxide [N2O]), in vitro dry matter disappearance rate (IVDMD), and microbiome changes. Commercially available α-amylase (0.2 g/100 mL) was used as a sub-control in Exp. 2a. Using gas chromatography, all gases were collected using an ANKOM Gas Production system and analyzed for CH4 and N2O. In Exp. 1, total gas production, cumulative gas, and GHG productions (CH4, N2O) linearly decreased (p ≤ 0.05) with increasing MB supplementation. In Exp. 2a, cumulative in vitro gas, total gas production, and rumen fermentation profiles (e.g., total VFA, acetate, butyrate, iso-butyrate, valerate, and iso-valerate) linearly decreased (p < 0.05–0.01) with increasing MB supplementation, with diet–treatment interactions (p < 0.001). In addition, CH4 and N2O production (mL/g DM) linearly and quadratically decreased (p < 0.01) with increasing MB supplementation across the diets. However, IVDMD linearly and/or quadratically increased (p < 0.01) with increasing MB, with diet–treatment interactions (p < 0.001). The average populations of Bacteroidetes, Proteobacteria, and Spirochaetes were significantly decreased (p < 0.01–0.001) for MB treatment groups compared to the control group. Therefore, it may be possible to suppress methane production directly and indirectly by adding MB and α-amylase by modifying ruminal fermentation profiles.
Journal Article
Condensed and Hydrolyzable Tannins for Reducing Methane and Nitrous Oxide Emissions in Dairy Manure—A Laboratory Incubation Study
by
Castleberry, Lana
,
Willis, Will
,
Parker, David
in
Dairy cattle
,
dairy cattle manure
,
Experiments
2022
The objectives of this study were to (1) examine the effects of plant condensed (CT) and hydrolyzable tannin (HT) extracts on CH4 and N2O emissions; (2) identify the reactions responsible for manure-derived GHG emissions, and (3) examine accompanying microbial community changes in fresh dairy manure. Five treatments were applied in triplicate to the freshly collected dairy manure, including 4% CT, 8% CT, 4% HT, 8% HT (V/V), and control (no tannin addition). Fresh dairy manure was placed into 710 mL glass incubation chambers. In vitro composted dairy manure samples were collected at 0, 24, 48, and 336 h after the start of incubation. Fluxes of N2O and CH4 were measured for 5-min/h for 14 d at a constant ambient incubation temperature of 39 °C. The addition of quebracho CT significantly decreased the CH4 flux rates compared to the tannin-free controls (215.9 mg/m2/h), with peaks of 75.6 and 89.6 mg/m2/h for 4 and 8% CT inclusion rates, respectively. Furthermore, CT significantly reduced cumulative CH4 emission by 68.2 and 57.3% at 4 and 8% CT addition, respectively. The HT treatments failed to affect CH4 reduction. However, both CT and HT reduced (p < 0.001) cumulative and flux rates of N2O emissions. The decrease in CH4 flux with CT was associated with a reduction in the abundance of Bacteroidetes and Proteobacteria.
Journal Article
Determining Appropriate Numbers and Times of Daily Measurements Using GreenFeed System to Estimate Ruminal Methane Emission of Meat Goats
2024
The study was conducted to determine appropriate numbers and times of daily gas measurements to estimate total daily methane (CH4) emission of meat goats using a GreenFeed system (GFS). A replicated 4 (four measurement protocols) × 4 (four periods) Latin square design was employed with 16 Boer wethers in a confinement pen setting. Measurement protocols entailed three (G-3T; 0600–0700, 1400–1500, and 2200–2300 h), four (G-4T; 0700–0800, 1300–1400, 1900–2000, and 0100–0200 h), and six (G-6T; 0800–0900, 1200–1300, 1600–1700, 2000–2100, 0000–0100, and 0400–0500 h) times for daily measurement periods in GFS. The fourth protocol was continuous measurement over 24 h with animals in an open-circuit respiration calorimetry system (CS). Oat hay was given in individual feeders, and a small predetermined quantity of a pelleted concentrate supplement (bait) was dispensed by the GFS or manually offered for the CS. Overall, total dry matter (DM) intake (614, 625, 635, and 577 g/day for CS, G-3T, G-4T, and G-6T, respectively; SEM = 13.9) and digestible DM intake (359, 368, 374, and 320 CS, G-3T, G-4T, and G-6T, respectively; SEM = 15.9) were lower for CS than for G-3T, G-4T, and G-6T (p < 0.05), but these variables were not different among the GFS protocols. There was a significant (p < 0.001) effect of measurement protocol on CH4 emission in g/day (11.1, 25.6, 27.3, and 26.7 for CS, G-3T, G-4T, and G-6T, respectively; SEM = 1.11), g/kg DM intake (19.3, 46.4, 43.9, and 42.4 for CS, G-3T, G-4T, and G-6T, respectively; SEM = 2.03), and g/kg body weight (0.49, 1.11, 1.18, and 1.16 for CS, G-3T, G-4T, and G-6T, respectively; SEM = 0.052), with values being much lower for CS than for G-3T, G-4T and G-6T. Conversely, CH4 emission was similar among the GFS protocols despite differences in the time and number of daily visits (2.03, 2.76, and 3.75 visits for G-3T, G-4T, and G-6T, respectively; SEM = 0.114; p < 0.001). Pearson correlation (r) analysis indicated a moderate to high (p < 0.05) correlation between CS and G-3T (r = 0.62 for CH4 in g/day and r = 0.59 for CH4 in g/kg BW), CS and G-4T (r = 0.67 for CH4 in g/day and r = 0.76 for CH4 in g/kg BW), and CS and G-6T (r = 0.70 for CH4 in g/day and r = 0.75 for CH4 in g/kg BW). However, the correlation coefficient for CH4 in g/kg DM intake was low between CS and G-3T (r = 0.11) and CS and G-6T (r = 0.31) but slightly greater between CS and G-4T (r = 0.47). In conclusion, the results suggest that CH4 emissions using GFS in a confinement setting were greater compared with the CS in goats, but CH4-emission estimation using the GFS correlated with the CH4 emission in the CS system with a stronger relationship for the four times of daily measurements.
Journal Article
Effect of Select Tannin Sources on Pathogen Control and Microbial Nitrogen Metabolism in Composted Poultry Litter Intended for Use as a Ruminant Crude Protein Feedstuff
by
Hume, Michael E.
,
Wottlin, Lauren R.
,
Ledezma, Evelyn
in
Accumulation
,
Acid resistance
,
acid tolerance
2022
Poultry litter is a good crude protein supplement for ruminants but must be treated to kill pathogens before feeding. Composting effectively kills pathogens but risks loss of ammonia due to uric acid degradation. The objectives of this study were to test the ability of tannins to reduce pathogens and preserve uric acid during poultry litter composting. In two experiments, poultry litter was mixed with phosphate buffer and distributed to 50-ml tubes (three tubes/treatment per sample day) amended with 1 ml buffer alone or buffer containing pine bark, quebracho, chestnut, or mimosa tannins. Treatments achieved 0.63% (wt/wt) quebracho, chestnut, or mimosa tannins in experiment 1, or 4.5% pine bark or 9% quebracho, chestnut, or mimosa tannins in experiment 2. Tubes were inoculated with a novobiocin- and nalidixic acid-resistant
Salmonella
typhimurium, closed with caps, and incubated at successive 3-day increments at 22, 37, and 42°C, respectively. In experiment 1, bacterial counts in contents collected on days 0, 6, and 9 revealed a treatment by day effect (
p
< 0.03), with the
Salmonella
challenge being 1.3 log
10
CFU/g higher in quebracho-treated composts than in untreated controls after 6 days of composting. After 9 days of composting,
Salmonella
, wildtype
Escherichia coli
, and total aerobes in untreated and all tannin-treated composts were decreased by about 2.0 log
10
CFU/g compared to day 0 numbers (3.06, 3.75, and 7.77 log
10
CFU/g, respectively). Urea and ammonia concentrations tended (
p
< 0.10) to be increased in chestnut-treated composts compared to controls and concentrations of uric acid, urea, and ammonia were higher (
p
< 0.05) after 9 days of composting than on day 0. Despite higher tannin application in experiment 2, antibacterial effects of treatment or day of composting were not observed (
p
> 0.05). However, treatment by time of composting interactions was observed (
p
< 0.05), with quebracho- and chestnut-treated composts accumulating more uric acid after 24 h and 9 days of composting and chestnut-, mimosa- or quebracho-treated composts accumulating less ammonia than untreated composts. Results demonstrate that composting may effectively control pathogens and that tannin treatment can help preserve the crude protein quality of composting poultry litter.
Journal Article
Potential role of rumen microbiota in altering average daily gain and feed efficiency in meat goats fed simple and mixed pastures using bacterial tag-encoded FLX amplicon pyrosequencing
2019
Cost-effective and feasible production system of meat goats requires that grazed forages are converted to profitable goat meat product. However, there are studies as how altering forage type influences ruminal fermentation parameters and animal growth performance, and interact with microbiota in meat goats. Our objective for current study was to examine whether the comparative abundance of the Bacteroidetes (B) and Firmicutes (F) bacterial phyla in meat goats fed simple and mixed forages influenced average daily gain (ADG) and rumen fermentation parameters. In the present study, a molecular approach, bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) was applied to accomplish diversity analyses of rumen bacterial populations. Thirty-six Kiko-cross growing meat goats (body weight (BW) = 27.7 ± 2.83 kg) at approximately 7 mo of age were used in this study. Animals were randomly allocated to 3 pasture treatment groups (n = 12) as follows: 1) bermudagrass pasture (BG; Cynodon dactylon), 2) sunn hemp forage (SH; Crotalaria juncea), and 3) BG + SH forage combinations. There were 2 replicates per treatment and animals grazed these pastures for 45 d. Results indicated that treatments had similar initial BW, but final BW and ADG were higher (P < 0.01) for SH and BG + SH combinations than for BG alone. Animal ADG and rumen fermentation (acetate to propionate; A/P ratios) were highly correlated with the abundance of various bacterial populations within the rumen microbiome. There were linear decreases in percentage of Bacteroidetes (R2 = -0.84; P < 0.05) associated with decreasing ADG. In contrast, increased ADG was linearly associated with higher percentages of Firmicutes (R2 = 0.79; P < 0.05), F/B ratios (R2 = 0.88; P = 0.07), total VFA (R2 = 0.45; P < 0.05), and lower A/P ratio (R2 = -0.72; P < 0.01). This suggests that the substrates (diets) and bacterial community have the role in adapting host biological parameters in meat goats. The abundance examination of both Bacteroidetes and Firmicutes will be useful for exploring the structure of gut microbiota as an estimate of animal performance.
Journal Article
PSIX-2 Potential role of rumen microbiota in altering average daily gain and feed efficiency in meat goats fed simple and mixed pastures using bacterial tag-encoded FLX amplicon pyrosequencing
2019
Our objective was to examine whether the comparative abundance of the Bacteroidetes (B) and Firmicutes (F) bacterial phyla in meat goats fed simple and mixed forages influenced average daily gain (ADG), rumen fermentation parameters and bacterial diversity changes using a tag-encoded FLX amplicon pyrosequencing (bTEFAP). Thirty-six Kiko-cross growing meat goats (BW = 27.7 ± 2.83) at approximate age of 7 mo were used in this study. Animals were randomly allocated to three pasture treatment groups (n = 12) as follows: (1) bermudagrass (BG; Cynodon dactylon), (2) sun hemp (SH; Crotalaria juncea) forage, and (3) BG + SH forage combinations for 45-d. Results indicated that there were no differences in initial BW among treatments, but final BW and ADG were higher (P < 0.01) for SH and BG + SH combinations than for BG alone. We investigated the alterations between the different forage diets and found that ADG and rumen fermentation (A/P ratio), were highly correlated with the abundance of various bacterial populations within the rumen microbiome. There were linear decreases in percentage of Bacteroidetes (R2 = -0.84; P < 0.05) associated with decreasing ADG. In contrast, increased ADG was linearly associated with higher percentages of Firmicutes (R2 = 0.79; P < 0.05), F/B ratio (R2 = 0.88; P = 0.07), total VFA (R2 = 0.45; P < 0.05), and lower A/P ratio (R2 = -0.72; P < 0.01). This suggest that the substrate and bacterial community have the role in adapting host biological parameters in meat goats. The abundance examination of both Bacteroidetes and Firmicutes will be useful for exploring the structure of gut microbiota as an estimate of animal performance.
Journal Article
PSIX-1 Associative effect of wet-distillers’ grains plus solubles and tannin-rich peanut skin supplementation on in vitro rumen fermentation, greenhouse gas emissions, and microbiome changes
2019
The role of tannin-rich peanut skin (PS) and associative effects of different levels of wet distillers’ grains plus solubles (WDGS) on ruminal fermentation, microbial changes, and mitigation of greenhouse gas (GHG) and other emissions in bovine rumen fluid were investigated. All gases were collected using an Ankom in vitro system for methane (CH4), nitrous oxide (N2O), and hydrogen sulfide (H2S) analyses. Fifteen % ground PS against 0, 10, 20, 30, and 40 % DM of WDGS were used. RT-qPCR were conducted to determine microbial diversity. In the absence of PS, total CH4 and H2S, or CH4 and H2S productions per gram of DM substrate, were linearly increased (P < 0.05) with increasing WDGS. However, in the presence of PS, those trends were reversed and CH4 and H2S productions were decreased (P < 0.05), suggesting that a diet with 15% PS and supplementation of 10 and 20% WDGS were able to reduce CH4 and H2S emissions by 12 and 33%, respectively. In the presence of PS, rumen fermentation rate (as a measured by VFA) and acetate/propionate (A/P) ratio was decreased with increasing WDGS, with PS x WDGS interactions (P < 0.01). In the presence of PS, there was a decreased (P < 0.05) the average population of Bacteroidetes, total methanogens, Methanobrevibacter sp. AbM4, and total protozoa populations at 40% WDGS, with PS x WDGS interactions (P < 0.01). The population of total methanogens (R2 = 0.57; P < 0.01), Firmicutes populations (R2= 0.46: P < 0.05), and F/B ratio (R2 = 0.46; P < 0.03) were strongly correlated with ruminal methane gas production. Therefore, associative effect of tannin-rich PS and WDGS suppressed methanogenesis pathways directly across their antimethanogenic activity and secondarily throughout their modification of protozoa population.
Journal Article