Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
24,535
result(s) for
"Min, Wei"
Sort by:
Biological imaging of chemical bonds by stimulated Raman scattering microscopy
2019
All molecules consist of chemical bonds, and much can be learned from mapping the spatiotemporal dynamics of these bonds. Since its invention a decade ago, stimulated Raman scattering (SRS) microscopy has become a powerful modality for imaging chemical bonds with high sensitivity, resolution, speed and specificity. We introduce the fundamentals of SRS microscopy and review innovations in SRS microscopes and imaging probes. We highlight examples of exciting biological applications, and share our vision for potential future breakthroughs for this technology.
Journal Article
SVM and SVM Ensembles in Breast Cancer Prediction
2017
Breast cancer is an all too common disease in women, making how to effectively predict it an active research problem. A number of statistical and machine learning techniques have been employed to develop various breast cancer prediction models. Among them, support vector machines (SVM) have been shown to outperform many related techniques. To construct the SVM classifier, it is first necessary to decide the kernel function, and different kernel functions can result in different prediction performance. However, there have been very few studies focused on examining the prediction performances of SVM based on different kernel functions. Moreover, it is unknown whether SVM classifier ensembles which have been proposed to improve the performance of single classifiers can outperform single SVM classifiers in terms of breast cancer prediction. Therefore, the aim of this paper is to fully assess the prediction performance of SVM and SVM ensembles over small and large scale breast cancer datasets. The classification accuracy, ROC, F-measure, and computational times of training SVM and SVM ensembles are compared. The experimental results show that linear kernel based SVM ensembles based on the bagging method and RBF kernel based SVM ensembles with the boosting method can be the better choices for a small scale dataset, where feature selection should be performed in the data pre-processing stage. For a large scale dataset, RBF kernel based SVM ensembles based on boosting perform better than the other classifiers.
Journal Article
تقرير عن تعديل الأهداف الرئيسية لمخطط الاقتصاد الوطني لعام 1959 وحول المزيد من تطوير حملة زيادة الإنتاج وممارسة الاقتصاد : ألقاه في الجلسة الخامسة للجنة الدائمة للمجلس الوطني لنواب الشعب في 26 من شهر آب (أغسطس) عام 1959
by
Zhou, Enlai, 1898-1976 مؤلف
,
Zhou, Enlai, 1898-1976. Quan guo ren min dai biao da hui chang wu wei yuan hui guan yu tiao zheng yi jiu wu jiu nian guo min jing ji ji hua zhu yao zhi biao he kai zhan zeng chan jie yue yun dong de jue yi : guan yu tiao zheng yi jiu wu jiu nian guo min jing ji ji hua zhu yao zhi biao he jin yi bu kai zhan zeng chan jie yue yun dong de bao gao
,
Wài wén chū băn shè مترجم
in
China. Quan guo ren min dai biao da hui
,
الصين سياسة اقتصادية تقارير
,
الصين أحوال اقتصادية
1959
Baicalin mitigates cognitive impairment and protects neurons from microglia‐mediated neuroinflammation via suppressing NLRP3 inflammasomes and TLR4/NF‐κB signaling pathway
2019
Summary Aims Baicalin (BAI), a flavonoid compound isolated from the root of Scutellaria baicalensis Georgi, has been established to have potent anti‐inflammation and neuroprotective properties; however, its effects during Alzheimer's disease (AD) treatment have not been well studied. This study aimed to investigate the effects of BAI pretreatment on cognitive impairment and neuronal protection against microglia‐induced neuroinflammation and to explore the mechanisms underlying its anti‐inflammation effects. Methods To determine whether BAI plays a positive role in ameliorating the memory and cognition deficits in APP (amyloid beta precursor protein)/PS1 (presenilin‐1) mice, behavioral experiments were conducted. We assessed the effects of BAI on microglial activation, the production of proinflammatory cytokines, and neuroinflammation‐mediated neuron apoptosis in vivo and in vitro using Western blot, RT‐PCR, ELISA, immunohistochemistry, and immunofluorescence. Finally, to elucidate the anti‐inflammation mechanisms underlying the effects of BAI, the protein expression of NLRP3 inflammasomes and the expression of proteins involved in the TLR4/NF‐κB signaling pathway were measured using Western blot and immunofluorescence. Results The results indicated that BAI treatment attenuated spatial memory dysfunction in APP/PS1 mice, as assessed by the passive avoidance test and the Morris water maze test. Additionally, BAI administration effectively decreased the number of activated microglia and proinflammatory cytokines, as well as neuroinflammation‐mediated neuron apoptosis, in APP/PS1 mice and LPS (lipopolysaccharides)/Aβ‐stimulated BV2 microglial cells. Lastly, the molecular mechanistic study revealed that BAI inhibited microglia‐induced neuroinflammation via suppression of the activation of NLRP3 inflammasomes and the TLR4/NF‐κB signaling pathway. Conclusion Overall, the results of the present study indicated that BAI is a promising neuroprotective compound for use in the prevention and treatment of microglia‐mediated neuroinflammation during AD progression.
Journal Article
FAM171B stabilizes vimentin and enhances CCL2-mediated TAM infiltration to promote bladder cancer progression
2023
Background
Invasion and metastasis are the main causes of unfavourable prognosis in patients diagnosed with bladder cancer. The efficacy of immunotherapy in bladder cancer remains suboptimal due to the presence of an immunosuppressive microenvironment. The novel protein family with sequence similarity 171B (FAM171B) has been identified, but its precise role and mechanism in bladder cancer remain unclear.
Methods
In this study, we conducted an analysis to investigate the associations between FAM171B expression and the prognosis and clinicopathological stage of bladder cancer. To this end, we utilized RNA sequencing data from the TCGA and GEO databases, as well as tumor tissue specimens obtained from our clinical centre. RNA sequencing analysis allowed us to examine the biological function of FAM171B at the transcriptional level in bladder cancer cells. Additionally, we used immunoprecipitation and mass spectrometry to identify the protein that interacts with FAM171B in bladder cancer cells. The effects of FAM171B on modulating tumor-associated macrophages (TAMs) and vimentin-mediated tumor progression, as well as the underlying mechanisms, were clarified by phalloidin staining, immunofluorescence staining, ELISA, RNA immunoprecipitation, flow cytometry and a bladder cancer graft model.
Results
FAM171B expression exhibits strong positive correlation with poor survival outcomes and advanced clinicopathological stages in patients with bladder cancer. FAM171B significantly promoted bladder cancer growth and metastasis, accompanied by TAM accumulation in the microenvironment, in vivo and in vitro. Through studies of the molecular mechanism, we found that FAM171B contributes to tumor progression by stabilizing vimentin in the cytoplasm. Additionally, our research revealed that FAM171B enhances the splicing of CCL2 mRNA by interacting with heterogeneous nuclear ribonucleoprotein U (HNRNPU), ultimately leading to increased recruitment and M2 polarization of TAMs.
Conclusions
In this study, we identified FAM171B as a potent factor that promotes the progression of bladder cancer. These findings establish a solid theoretical foundation for considering FAM171B as a potential diagnostic and therapeutic biomarker for bladder cancer.
Journal Article
Identification of a subset of immunosuppressive P2RX1-negative neutrophils in pancreatic cancer liver metastasis
The immunosuppressive microenvironment that is shaped by hepatic metastatic pancreatic ductal adenocarcinoma (PDAC) is essential for tumor cell evasion of immune destruction. Neutrophils are important components of the metastatic tumor microenvironment and exhibit heterogeneity. However, the specific phenotypes, functions and regulatory mechanisms of neutrophils in PDAC liver metastases remain unknown. Here, we show that a subset of P2RX1-negative neutrophils accumulate in clinical and murine PDAC liver metastases. RNA sequencing of murine PDAC liver metastasis-infiltrated neutrophils show that P2RX1-deficient neutrophils express increased levels of immunosuppressive molecules, including PD-L1, and have enhanced mitochondrial metabolism. Mechanistically, the transcription factor Nrf2 is upregulated in P2RX1-deficient neutrophils and associated with PD-L1 expression and metabolic reprogramming. An anti-PD-1 neutralizing antibody is sufficient to compromise the immunosuppressive effects of P2RX1-deficient neutrophils on OVA-activated OT1 CD8+ T cells. Therefore, our study uncovers a mechanism by which metastatic PDAC tumors evade antitumor immunity by accumulating a subset of immunosuppressive P2RX1-negative neutrophils.
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive metastatic disease characterized by an immunosuppressive microenvironment. Here the authors show that a subset of P2RX1-negative neutrophils with immunosuppressive properties accumulate in PDAC metastatic liver tissues and promote tumor growth.
Journal Article
Flights to Safety
2020
We identify flight-to-safety (FTS) days for twenty-three countries using only stock and bond returns and a model averaging approach. FTS days comprise less than 2% of the sample and are associated with a 2.7% average bond-equity return differential and significant flows out of equity funds and into government bond and money market funds. FTS represents flights to both quality and liquidity in international equity markets, but mainly a flight to quality in the U. S. corporate bond market. Emerging markets, endowment funds, and hedge funds perform poorly during FTS, whereas hedge funds appear to vary their systematic exposures prior to an FTS.
Journal Article
Heat Shock Proteins: Dynamic Biomolecules to Counter Plant Biotic and Abiotic Stresses
2019
Due to the present scenario of climate change, plants have to evolve strategies to survive and perform under a plethora of biotic and abiotic stresses, which restrict plant productivity. Maintenance of plant protein functional conformation and preventing non-native proteins from aggregation, which leads to metabolic disruption, are of prime importance. Plant heat shock proteins (HSPs), as chaperones, play a pivotal role in conferring biotic and abiotic stress tolerance. Moreover, HSP also enhances membrane stability and detoxifies the reactive oxygen species (ROS) by positively regulating the antioxidant enzymes system. Additionally, it uses ROS as a signal to molecules to induce HSP production. HSP also enhances plant immunity by the accumulation and stability of pathogenesis-related (PR) proteins under various biotic stresses. Thus, to unravel the entire plant defense system, the role of HSPs are discussed with a special focus on plant response to biotic and abiotic stresses, which will be helpful in the development of stress tolerance in plant crops.
Journal Article