Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
12 result(s) for "Minto, Gary"
Sort by:
Restrictive versus Liberal Fluid Therapy for Major Abdominal Surgery
Patients undergoing major abdominal surgery received restrictive or liberal intravenous fluids during surgery and up to 24 hours thereafter. The restrictive regimen did not improve disability-free survival and resulted in increased acute kidney injury.
Heart rate recovery and morbidity after noncardiac surgery: Planned secondary analysis of two prospective, multi-centre, blinded observational studies
Impaired cardiac vagal function, quantified preoperatively as slower heart rate recovery (HRR) after exercise, is independently associated with perioperative myocardial injury. Parasympathetic (vagal) dysfunction may also promote (extra-cardiac) multi-organ dysfunction, although perioperative data are lacking. Assuming that cardiac vagal activity, and therefore heart rate recovery response, is a marker of brainstem parasympathetic dysfunction, we hypothesized that impaired HRR would be associated with a higher incidence of morbidity after noncardiac surgery. In two prospective, blinded, observational cohort studies, we established the definition of impaired vagal function in terms of the HRR threshold that is associated with perioperative myocardial injury (HRR ≤ 12 beats min-1 (bpm), 60 seconds after cessation of cardiopulmonary exercise testing. The primary outcome of this secondary analysis was all-cause morbidity three and five days after surgery, defined using the Post-Operative Morbidity Survey. Secondary outcomes of this analysis were type of morbidity and time to become morbidity-free. Logistic regression and Cox regression tested for the association between HRR and morbidity. Results are presented as odds/hazard ratios [OR or HR; (95% confidence intervals). 882/1941 (45.4%) patients had HRR≤12bpm. All-cause morbidity within 5 days of surgery was more common in 585/822 (71.2%) patients with HRR≤12bpm, compared to 718/1119 (64.2%) patients with HRR>12bpm (OR:1.38 (1.14-1.67); p = 0.001). HRR≤12bpm was associated with more frequent episodes of pulmonary (OR:1.31 (1.05-1.62);p = 0.02)), infective (OR:1.38 (1.10-1.72); p = 0.006), renal (OR:1.91 (1.30-2.79); p = 0.02)), cardiovascular (OR:1.39 (1.15-1.69); p<0.001)), neurological (OR:1.73 (1.11-2.70); p = 0.02)) and pain morbidity (OR:1.38 (1.14-1.68); p = 0.001) within 5 days of surgery. Multi-organ dysfunction is more common in surgical patients with cardiac vagal dysfunction, defined as HRR ≤ 12 bpm after preoperative cardiopulmonary exercise testing. ISRCTN88456378.
Cardiopulmonary Exercise Capacity and Preoperative Markers of Inflammation
Explanatory mechanisms for the association between poor exercise capacity and infections following surgery are underexplored. We hypothesized that aerobic fitness—assessed by cardiopulmonary exercise testing (CPET)—would be associated with circulating inflammatory markers, as quantified by the neutrophil-lymphocyte ratio (NLR) and monocyte subsets. The association between cardiopulmonary reserve and inflammation was tested by multivariable regression analysis with covariates including anaerobic threshold (AT) and malignancy. In a first cohort of 240 colorectal patients, AT was identified as the sole factor associated with higher NLR ( P = 0.03 ) and absolute and relative lymphopenia ( P = 0.01 ) . Preoperative leukocyte subsets and monocyte CD14+ expression (downregulated by endotoxin and indicative of chronic inflammation) were also assessed in two further cohorts of age-matched elective gastrointestinal and orthopaedic surgical patients. Monocyte CD14+ expression was lower in gastrointestinal patients ( n = 43 ) compared to age-matched orthopaedic patients ( n = 31 ) . The circulating CD14+CD16− monocyte subset was reduced in patients with low cardiopulmonary reserve. Poor exercise capacity in patients without a diagnosis of heart failure is independently associated with markers of inflammation. These observations suggest that preoperative inflammation associated with impaired cardiorespiratory performance may contribute to the pathophysiology of postoperative outcome.
Heart rate recovery and morbidity after noncardiac surgery: Planned secondary analysis of two prospective, multi-centre, blinded observational studies
Impaired cardiac vagal function, quantified preoperatively as slower heart rate recovery (HRR) after exercise, is independently associated with perioperative myocardial injury. Parasympathetic (vagal) dysfunction may also promote (extra-cardiac) multi-organ dysfunction, although perioperative data are lacking. Assuming that cardiac vagal activity, and therefore heart rate recovery response, is a marker of brainstem parasympathetic dysfunction, we hypothesized that impaired HRR would be associated with a higher incidence of morbidity after noncardiac surgery. In two prospective, blinded, observational cohort studies, we established the definition of impaired vagal function in terms of the HRR threshold that is associated with perioperative myocardial injury (HRR [less than or equal to] 12 beats min.sup.-1 (bpm), 60 seconds after cessation of cardiopulmonary exercise testing. The primary outcome of this secondary analysis was all-cause morbidity three and five days after surgery, defined using the Post-Operative Morbidity Survey. Secondary outcomes of this analysis were type of morbidity and time to become morbidity-free. Logistic regression and Cox regression tested for the association between HRR and morbidity. Results are presented as odds/hazard ratios [OR or HR; (95% confidence intervals). 882/1941 (45.4%) patients had HRR[less than or equal to]12bpm. All-cause morbidity within 5 days of surgery was more common in 585/822 (71.2%) patients with HRR[less than or equal to]12bpm, compared to 718/1119 (64.2%) patients with HRR>12bpm (OR:1.38 (1.14-1.67); p = 0.001). HRR[less than or equal to]12bpm was associated with more frequent episodes of pulmonary (OR:1.31 (1.05-1.62);p = 0.02)), infective (OR:1.38 (1.10-1.72); p = 0.006), renal (OR:1.91 (1.30-2.79); p = 0.02)), cardiovascular (OR:1.39 (1.15-1.69); p<0.001)), neurological (OR:1.73 (1.11-2.70); p = 0.02)) and pain morbidity (OR:1.38 (1.14-1.68); p = 0.001) within 5 days of surgery. Multi-organ dysfunction is more common in surgical patients with cardiac vagal dysfunction, defined as HRR [less than or equal to] 12 bpm after preoperative cardiopulmonary exercise testing.
Heart rate recovery and morbidity after noncardiac surgery: Planned secondary analysis of two prospective, multi-centre, blinded observational studies
Impaired cardiac vagal function, quantified preoperatively as slower heart rate recovery (HRR) after exercise, is independently associated with perioperative myocardial injury. Parasympathetic (vagal) dysfunction may also promote (extra-cardiac) multi-organ dysfunction, although perioperative data are lacking. Assuming that cardiac vagal activity, and therefore heart rate recovery response, is a marker of brainstem parasympathetic dysfunction, we hypothesized that impaired HRR would be associated with a higher incidence of morbidity after noncardiac surgery. In two prospective, blinded, observational cohort studies, we established the definition of impaired vagal function in terms of the HRR threshold that is associated with perioperative myocardial injury (HRR [less than or equal to] 12 beats min.sup.-1 (bpm), 60 seconds after cessation of cardiopulmonary exercise testing. The primary outcome of this secondary analysis was all-cause morbidity three and five days after surgery, defined using the Post-Operative Morbidity Survey. Secondary outcomes of this analysis were type of morbidity and time to become morbidity-free. Logistic regression and Cox regression tested for the association between HRR and morbidity. Results are presented as odds/hazard ratios [OR or HR; (95% confidence intervals). 882/1941 (45.4%) patients had HRR[less than or equal to]12bpm. All-cause morbidity within 5 days of surgery was more common in 585/822 (71.2%) patients with HRR[less than or equal to]12bpm, compared to 718/1119 (64.2%) patients with HRR>12bpm (OR:1.38 (1.14-1.67); p = 0.001). HRR[less than or equal to]12bpm was associated with more frequent episodes of pulmonary (OR:1.31 (1.05-1.62);p = 0.02)), infective (OR:1.38 (1.10-1.72); p = 0.006), renal (OR:1.91 (1.30-2.79); p = 0.02)), cardiovascular (OR:1.39 (1.15-1.69); p<0.001)), neurological (OR:1.73 (1.11-2.70); p = 0.02)) and pain morbidity (OR:1.38 (1.14-1.68); p = 0.001) within 5 days of surgery. Multi-organ dysfunction is more common in surgical patients with cardiac vagal dysfunction, defined as HRR [less than or equal to] 12 bpm after preoperative cardiopulmonary exercise testing.
Mildly elevated lactate levels are associated with microcirculatory flow abnormalities and increased mortality: a microSOAP post hoc analysis
Background Mildly elevated lactate levels (i.e., 1–2 mmol/L) are increasingly recognized as a prognostic finding in critically ill patients. One of several possible underlying mechanisms, microcirculatory dysfunction, can be assessed at the bedside using sublingual direct in vivo microscopy. We aimed to evaluate the association between relative hyperlactatemia, microcirculatory flow, and outcome. Methods This study was a predefined subanalysis of a multicenter international point prevalence study on microcirculatory flow abnormalities, the Microcirculatory Shock Occurrence in Acutely ill Patients (microSOAP). Microcirculatory flow abnormalities were assessed with sidestream dark-field imaging. Abnormal microcirculatory flow was defined as a microvascular flow index (MFI) < 2.6. MFI is a semiquantitative score ranging from 0 (no flow) to 3 (continuous flow). Associations between microcirculatory flow abnormalities, single-spot lactate measurements, and outcome were analyzed. Results In 338 of 501 patients, lactate levels were available. For this substudy, all 257 patients with lactate levels ≤ 2 mmol/L (median [IQR] 1.04 [0.80–1.40] mmol/L) were included. Crude ICU mortality increased with each lactate quartile. In a multivariable analysis, a lactate level > 1.5 mmol/L was independently associated with a MFI < 2.6 (OR 2.5, 95% CI 1.1–5.7, P  = 0.027). Conclusions In a heterogeneous ICU population, a single-spot mildly elevated lactate level (even within the reference range) was independently associated with increased mortality and microvascular flow abnormalities. In vivo microscopy of the microcirculation may be helpful in discriminating between flow- and non-flow-related causes of mildly elevated lactate levels. Trial registration ClinicalTrials.gov, NCT01179243 . Registered on August 3, 2010.
Sympathetic autonomic dysfunction and impaired cardiovascular performance in higher risk surgical patients: implications for perioperative sympatholysis
ObjectiveRecent perioperative trials have highlighted the urgent need for a better understanding of why sympatholytic drugs intended to reduce myocardial injury are paradoxically associated with harm (stroke, myocardial infarction). We hypothesised that following a standardised autonomic challenge, a subset of patients may demonstrate excessive sympathetic activation which is associated with exercise-induced ischaemia and impaired cardiac output.MethodsHeart rate rise during unloaded pedalling (zero workload) prior to the onset of cardiopulmonary exercise testing (CPET) was measured in 2 observation cohorts of elective surgical patients. The primary outcome was exercise-evoked, ECG-defined ischaemia (>1 mm depression; lead II) associated with an exaggerated increase in heart rate (EHRR ≥12 bpm based on prognostic data for all-cause cardiac death in preceding epidemiological studies). Secondary outcomes included cardiopulmonary performance (oxygen pulse (surrogate for left ventricular stroke volume), peak oxygen consumption (VO2peak), anaerobic threshold (AT)) and perioperative heart rate.ResultsEHRR was present in 40.4–42.7% in both centres (n=232, n=586 patients). Patients with EHRR had higher heart rates perioperatively (p<0.05). Significant ST segment depression during CPET was more common in EHRR patients (relative risk 1.7 (95% CI 1.3 to 2.1); p<0.001). EHRR was associated with 11% (95%CI 7% to 15%) lower predicted oxygen pulse (p<0.0001), consistent with impaired left ventricular function.ConclusionsEHRR is common and associated with ECG-defined ischaemia and impaired cardiac performance. Perioperative sympatholysis may further detrimentally affect cardiac output in patients with this phenotype.
Solid-State NMR Studies of a Diverged Microsomal Amino-Proximate Δ12 Desaturase Peptide Reveal Causes of Stability in Bilayer: Tyrosine Anchoring and Arginine Snorkeling
This study reports the solid-state NMR spectroscopic characterization of the amino-proximate transmembrane domain (TM-A) of a diverged microsomal Δ12-desaturase (CREP-1) in a phospholipid bilayer. A series of TM-A peptides were synthesized with 2H-labeled side chains (Ala-53, -56, and -63, Leu-62, Val-50), and their dynamic properties were studied in 1,2-dimyristoyl- sn-glycero-3-phosphatidylcholine (DMPC) bilayers at various temperatures. At 6 mol % peptide to lipid, 31P NMR spectra indicated that the peptides did not significantly disrupt the phospholipid bilayer in the L α phase. The 2H NMR spectra from Ala-53 and Ala-56 samples revealed broad Pake patterns with quadrupolar splittings of 16.9 kHz and 13.3 kHz, respectively, indicating restricted motion confined within the hydrocarbon core of the phospholipid bilayer. Conversely, the deuterated Ala-63 sample revealed a peak centered at 0 kHz with a linewidth of 1.9 kHz, indicating increased side-chain motion and solvent exposure relative to the spectra of the other Ala residues. Val-50 and Leu-62 showed Pake patterns, with quadrupolar splittings of 3.5 kHz and 3.7 kHz, respectively, intermediate to Ala-53/Ala-56 and Ala-63. This indicates partial motional averaging and supports a model with the Val and Leu residues embedded inside the lipid bilayer. Solid-state NMR spectroscopy performed on the 2H-labeled Ala-56 TM-A peptide incorporated into magnetically aligned phospholipid bilayers indicated that the peptide is tilted 8° with respect to the membrane normal of the lipid bilayer. Snorkeling and anchoring interactions of Arg-44 and Tyr-60, respectively, with the polar region or polar hydrophobic interface of the lipid bilayer are suggested as control elements for insertional depth and orientation of the helix in the lipid matrix. Thus, this study defines the location of key residues in TM-A with respect to the lipid bilayer, describes the conformation of TM-A in a biomembrane mimic, presents a peptide-bilayer model useful in the consideration of local protein folding in the microsomal desaturases, and presents a model of arginine and tyrosine control of transmembrane protein stability and insertion.