Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
36 result(s) for "Mirdita, Milot"
Sort by:
Protein-level assembly increases protein sequence recovery from metagenomic samples manyfold
The open-source de novo protein-level assembler, Plass (https://plass.mmseqs.com), assembles six-frame-translated sequencing reads into protein sequences. It recovers 2–10 times more protein sequences from complex metagenomes and can assemble huge datasets. We assembled two redundancy-filtered reference protein catalogs, 2 billion sequences from 640 soil samples (soil reference protein catalog) and 292 million sequences from 775 marine eukaryotic metatranscriptomes (marine eukaryotic reference catalog), the largest free collections of protein sequences.
HH-suite3 for fast remote homology detection and deep protein annotation
Background HH-suite is a widely used open source software suite for sensitive sequence similarity searches and protein fold recognition. It is based on pairwise alignment of profile Hidden Markov models (HMMs), which represent multiple sequence alignments of homologous proteins. Results We developed a single-instruction multiple-data (SIMD) vectorized implementation of the Viterbi algorithm for profile HMM alignment and introduced various other speed-ups. These accelerated the search methods HHsearch by a factor 4 and HHblits by a factor 2 over the previous version 2.0.16. HHblits3 is ∼10× faster than PSI-BLAST and ∼20× faster than HMMER3. Jobs to perform HHsearch and HHblits searches with many query profile HMMs can be parallelized over cores and over cluster servers using OpenMP and message passing interface (MPI). The free, open-source, GPLv3-licensed software is available at https://github.com/soedinglab/hh-suite . Conclusion The added functionalities and increased speed of HHsearch and HHblits should facilitate their use in large-scale protein structure and function prediction, e.g. in metagenomics and genomics projects.
MetaEuk—sensitive, high-throughput gene discovery, and annotation for large-scale eukaryotic metagenomics
Background Metagenomics is revolutionizing the study of microorganisms and their involvement in biological, biomedical, and geochemical processes, allowing us to investigate by direct sequencing a tremendous diversity of organisms without the need for prior cultivation. Unicellular eukaryotes play essential roles in most microbial communities as chief predators, decomposers, phototrophs, bacterial hosts, symbionts, and parasites to plants and animals. Investigating their roles is therefore of great interest to ecology, biotechnology, human health, and evolution. However, the generally lower sequencing coverage, their more complex gene and genome architectures, and a lack of eukaryote-specific experimental and computational procedures have kept them on the sidelines of metagenomics. Results MetaEuk is a toolkit for high-throughput, reference-based discovery, and annotation of protein-coding genes in eukaryotic metagenomic contigs. It performs fast searches with 6-frame-translated fragments covering all possible exons and optimally combines matches into multi-exon proteins. We used a benchmark of seven diverse, annotated genomes to show that MetaEuk is highly sensitive even under conditions of low sequence similarity to the reference database. To demonstrate MetaEuk’s power to discover novel eukaryotic proteins in large-scale metagenomic data, we assembled contigs from 912 samples of the Tara Oceans project. MetaEuk predicted >12,000,000 protein-coding genes in 8 days on ten 16-core servers. Most of the discovered proteins are highly diverged from known proteins and originate from very sparsely sampled eukaryotic supergroups. Conclusion The open-source (GPLv3) MetaEuk software ( https://github.com/soedinglab/metaeuk ) enables large-scale eukaryotic metagenomics through reference-based, sensitive taxonomic and functional annotation. 4U3WMgJNVh8JdDg-h4V6ht Video abstract
Clustering predicted structures at the scale of the known protein universe
Proteins are key to all cellular processes and their structure is important in understanding their function and evolution. Sequence-based predictions of protein structures have increased in accuracy 1 , and over 214 million predicted structures are available in the AlphaFold database 2 . However, studying protein structures at this scale requires highly efficient methods. Here, we developed a structural-alignment-based clustering algorithm—Foldseek cluster—that can cluster hundreds of millions of structures. Using this method, we have clustered all of the structures in the AlphaFold database, identifying 2.30 million non-singleton structural clusters, of which 31% lack annotations representing probable previously undescribed structures. Clusters without annotation tend to have few representatives covering only 4% of all proteins in the AlphaFold database. Evolutionary analysis suggests that most clusters are ancient in origin but 4% seem to be species specific, representing lower-quality predictions or examples of de novo gene birth. We also show how structural comparisons can be used to predict domain families and their relationships, identifying examples of remote structural similarity. On the basis of these analyses, we identify several examples of human immune-related proteins with putative remote homology in prokaryotic species, illustrating the value of this resource for studying protein function and evolution across the tree of life. The novel Foldseek clustering algorithm defines 2.30 million clusters of AlphaFold structures, identifying remote structural similarity of human immune-related proteins in prokaryotic species.
Bilingual language model for protein sequence and structure
Adapting language models to protein sequences spawned the development of powerful protein language models (pLMs). Concurrently, AlphaFold2 broke through in protein structure prediction. Now we can systematically and comprehensively explore the dual nature of proteins that act and exist as three-dimensional (3D) machines and evolve as linear strings of one-dimensional (1D) sequences. Here, we leverage pLMs to simultaneously model both modalities in a single model. We encode protein structures as token sequences using the 3Di-alphabet introduced by the 3D-alignment method Foldseek. For training, we built a non-redundant dataset from AlphaFoldDB and fine-tuned an existing pLM (ProtT5) to translate between 3Di and amino acid sequences. As a proof-of-concept for our novel approach, dubbed Protein 'structure-sequence' T5 ( ProstT5 ), we showed improved performance for subsequent, structure-related prediction tasks, leading to three orders of magnitude speedup for deriving 3Di. This will be crucial for future applications trying to search metagenomic sequence databases at the sensitivity of structure comparisons. Our work showcased the potential of pLMs to tap into the information-rich protein structure revolution fueled by AlphaFold2. ProstT5 paves the way to develop new tools integrating the vast resource of 3D predictions and opens new research avenues in the post-AlphaFold2 era.
Cross-phyla protein annotation by structural prediction and alignment
Background Protein annotation is a major goal in molecular biology, yet experimentally determined knowledge is typically limited to a few model organisms. In non-model species, the sequence-based prediction of gene orthology can be used to infer protein identity; however, this approach loses predictive power at longer evolutionary distances. Here we propose a workflow for protein annotation using structural similarity, exploiting the fact that similar protein structures often reflect homology and are more conserved than protein sequences. Results We propose a workflow of openly available tools for the functional annotation of proteins via structural similarity ( MorF : Mor pholog F inder) and use it to annotate the complete proteome of a sponge. Sponges are highly relevant for inferring the early history of animals, yet their proteomes remain sparsely annotated. MorF accurately predicts the functions of proteins with known homology in > 90 % cases and annotates an additional 50 % of the proteome beyond standard sequence-based methods. We uncover new functions for sponge cell types, including extensive FGF, TGF, and Ephrin signaling in sponge epithelia, and redox metabolism and control in myopeptidocytes. Notably, we also annotate genes specific to the enigmatic sponge mesocytes, proposing they function to digest cell walls. Conclusions Our work demonstrates that structural similarity is a powerful approach that complements and extends sequence similarity searches to identify homologous proteins over long evolutionary distances. We anticipate this will be a powerful approach that boosts discovery in numerous -omics datasets, especially for non-model organisms.
TransAnnot—a fast transcriptome annotation pipeline
Abstract Summary The annotation of deeply sequenced, de novo assembled transcriptomes continues to be a challenge as some of the state-of-the-art tools are slow, difficult to install, and hard to use. We have tackled these issues with TransAnnot, a fast, automated transcriptome annotation pipeline that is easy to install and use. Leveraging the fast sequence searches provided by the MMseqs2 suite, TransAnnot offers one-step annotation of homologs from Swiss-Prot, gene ontology terms and orthogroups from eggNOG, and functional domains from Pfam. Users also have the option to annotate against custom databases. TransAnnot accepts sequencing reads (short and long), nucleotide sequences, or amino acid sequences as input for annotation. When benchmarked with test data sets of amino acid sequences, TransAnnot was 333, 284, and 18 times faster than comparable tools such as EnTAP, Trinotate, and eggNOG-mapper respectively. Availability and implementation TransAnnot is free to use, open sourced under GPLv3, and is implemented in C++ and Bash. Source code, documentation, and pre-compiled binaries are available at https://github.com/soedinglab/transannot. TransAnnot is also available via bioconda (https://anaconda.org/bioconda/transannot).
ColabFold: making protein folding accessible to all
ColabFold offers accelerated prediction of protein structures and complexes by combining the fast homology search of MMseqs2 with AlphaFold2 or RoseTTAFold. ColabFold’s 40−60-fold faster search and optimized model utilization enables prediction of close to 1,000 structures per day on a server with one graphics processing unit. Coupled with Google Colaboratory, ColabFold becomes a free and accessible platform for protein folding. ColabFold is open-source software available at https://github.com/sokrypton/ColabFold and its novel environmental databases are available at https://colabfold.mmseqs.com . ColabFold is a free and accessible platform for protein folding that provides accelerated prediction of protein structures and complexes using AlphaFold2 or RoseTTAFold.
Fast and accurate protein structure search with Foldseek
As structure prediction methods are generating millions of publicly available protein structures, searching these databases is becoming a bottleneck. Foldseek aligns the structure of a query protein against a database by describing tertiary amino acid interactions within proteins as sequences over a structural alphabet. Foldseek decreases computation times by four to five orders of magnitude with 86%, 88% and 133% of the sensitivities of Dali, TM-align and CE, respectively. Foldseek speeds up protein structural search by four to five orders of magnitude.