Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2
result(s) for
"Mishkit, Orin"
Sort by:
Genome writing to dissect consequences of SVA retrotransposon disease X-Linked Dystonia Parkinsonism
2025
Human retrotransposon insertions are often associated with diseases. In the case of the neurodegenerative X-Linked Dystonia-Parkinsonism disease, a human-specific SINE-VNTR-
subfamily F retrotransposon was inserted in intron 32 of the
gene. Here, we genomically rewrote a portion of the mouse
allele with the corresponding 78-kb XDP patient derived
allele. In mESCs, the presence of the intronic SVAs-rather than the hybrid gene structure-reduces hy
levels. This leads to transcriptional downregulation of genes with TATA box enriched in their promoters and triggering apoptosis. Chromatin and transcriptome profiling revealed that intronic SVAs are actively transcribed, forming barriers that likely impede transcription elongation. In mice, neuronal lineage
humanization resulted lethality of male progeny within two months. XDP male mice had severe atrophy centered on the striatum-the same affected brain region in XDP patients. Lastly, CRISPRa-mediated activation of hy
restored mESC viability, suggesting boosting
transcription as a therapeutic approach.
Journal Article
The expression profile and tumorigenic mechanisms of CD97 (ADGRE5) in glioblastoma render it a targetable vulnerability
2023
Glioblastoma (GBM) is the most common and aggressive primary brain malignancy. Adhesion G protein-coupled receptors (aGPCRs) have attracted interest for their functional role in gliomagenesis and their potential as treatment targets. To identify therapeutically targetable opportunities among aGPCR family members in unbiased fashion, we analyzed expression levels of all aGPCRs in GBM and non-neoplastic brain tissue. Using bulk and single cell transcriptomic and proteomic data, we show that CD97 (ADGRE5), an aGPCR previously implicated in GBM pathogenesis, is the most promising aGPCR target in GBM, by virtue of its abundance in all GBM tumors and its de novo expression profile in GBM compared to normal brain tissue and neural progenitors. CD97 knockdown or knockout significantly reduces the tumor initiation capacity of patient-derived GBM cultures (PDGC) in vitro and in vivo. Transcriptomic and metabolomic data from PDGCs suggest that CD97 promotes glycolytic metabolism. The oncogenic and metabolic effects of CD97 are mediated by the MAPK pathway. Activation of MAPK signaling depends on phosphorylation of the cytosolic C-terminus of CD97 and recruitment of β-arrestin. Using single-cell RNA-sequencing and biochemical assays, we demonstrate that THY1/CD90 is the most likely CD97 ligand in GBM. Lastly, we show that targeting of PDGCs with an anti-CD97 antibody-drug conjugate in vitro selectively kills tumor cells but not human astrocytes or neural stem cells. Our studies identify CD97 as an important regulator of tumor metabolism in GBM, elucidate mechanisms of receptor activation and signaling, and provide strong scientific rationale for developing biologics to target it for therapeutic purposes.