Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
344 result(s) for "Misra, Sanjay"
Sort by:
Analysis of customer reviews with an improved VADER lexicon classifier
BackgroundThe importance of customer reviews in determining satisfaction has significantly increased in the digital marketplace. Using sentiment analysis in customer reviews has immense potential but encounters challenges owing to domain heterogeneity. The sentiment orientation of words varies by domain; however, comprehending domain-specific sentiment reviews remains a significant constraint.AimThis study proposes an Improved VADER (IVADER) lexicon-based classification model to evaluate customer sentiment in multiple domains. The model involves constructing a domain-specific dictionary based on the VADER lexicon and classifying doeviews using the constructed dictionary.MethodologyThe proposed IVADER model uses data preprocessing, Vectorizer transformation, WordnetLemmatizer-based feature selection, and enhanced VADER Lexicon classifier.ResultCompared to existing studies, the IVVADER model accomplished outcomes of accuracy of 98.64%, precision of 97%, recall of 94%, f1-measure of 92%, and less training time of 44 s for classification.OutcomeProduct designers and business organizations can benefit from the IVADER model to evaluate multi-domain customer sentiment and introduce new products in the competitive online marketplace.
From Sensors to Safety: Internet of Emergency Services (IoES) for Emergency Response and Disaster Management
The advancement in technology has led to the integration of internet-connected devices and systems into emergency management and response, known as the Internet of Emergency Services (IoES). This integration has the potential to revolutionize the way in which emergency services are provided, by allowing for real-time data collection and analysis, and improving coordination among various agencies involved in emergency response. This paper aims to explore the use of IoES in emergency response and disaster management, with an emphasis on the role of sensors and IoT devices in providing real-time information to emergency responders. We will also examine the challenges and opportunities associated with the implementation of IoES, and discuss the potential impact of this technology on public safety and crisis management. The integration of IoES into emergency management holds great promise for improving the speed and efficiency of emergency response, as well as enhancing the overall safety and well-being of citizens in emergency situations. However, it is important to understand the possible limitations and potential risks associated with this technology, in order to ensure its effective and responsible use. This paper aims to provide a comprehensive understanding of the Internet of Emergency Services and its implications for emergency response and disaster management.
A deep learning framework for non-functional requirement classification
Analyzing, identifying, and classifying nonfunctional requirements from requirement documents is time-consuming and challenging. Machine learning-based approaches have been proposed to minimize analysts’ efforts, labor, and stress. However, the traditional approach of supervised machine learning necessitates manual feature extraction, which is time-consuming. This study presents a novel deep-learning framework for NFR classification to overcome these limitations. The framework leverages a more profound architecture that naturally captures feature structures, possesses enhanced representational power, and efficiently captures a broader context than shallower structures. To evaluate the effectiveness of the proposed method, an experiment was conducted on two widely-used datasets, encompassing 914 NFR instances. Performance analysis was performed on the applied models, and the results were evaluated using various metrics. Notably, the DReqANN model outperforms the other models in classifying NFR, achieving precision between 81 and 99.8%, recall between 74 and 89%, and F1-score between 83 and 89%. These significant results highlight the exceptional efficacy of the proposed deep learning framework in addressing NFR classification tasks, showcasing its potential for advancing the field of NFR analysis and classification.
The Role of Artificial Intelligence of Things in Achieving Sustainable Development Goals: State of the Art
With the environmental and societal changes, the achievement of sustainable development goals (SDGs) and the realization of sustainability in general is now more important than ever. Through a bibliometric analysis and scientific mapping analysis, this study aims to explore and provide a review regarding the role of artificial intelligence (AI), the Internet of Things (IoT), and artificial intelligence of things (AIoT) in realizing sustainable development and achieving SDGs. AIoT can be defined as the combination of AI with IoT to create more efficient and data-driven interconnected, intelligent, and autonomous IoT systems and infrastructure that use AI methods and algorithms. The analysis involved 9182 documents from Scopus and Web of Science (WoS) from 1989 to 2022. Descriptive statistics of the related documents and the annual scientific production were explored. The most relevant and impactful authors, articles, outlets, affiliations, countries, and keywords were identified. The most popular topics and research directions throughout the years and the advancement of the field and the research focus were also examined. The study examines the results, discusses the main findings, presents open issues, and suggests new research directions. Based on the results of this study, AIoT emerged as an important contributor in ensuring sustainability and in achieving SDGs.
A Bibliometric Analysis of the Evolution of State-of-the-Art Blockchain Technology (BCT) in the Agrifood Sector from 2014 to 2022
In recent years, BCT has garnered significant attention from researchers worldwide. The technology in question is a distributed database system characterised by its decentralised nature and lack of reliability. BCT has been widely adopted by numerous governments and scholars across various sectors for a number of years. Blockchain technology also involves highly innovative and advanced concepts. Given the increasing interest among scholars in the academic community regarding the agrifood supply chain, the objective of this study was to investigate BCT and its potential for application in the fields of food and agriculture. This research paper presents a bibliometric analysis of articles on the utilisation of BCT in the fields of food and agriculture. This study discusses scholarly articles that have been published in esteemed academic journals and conferences. Through our bibliometric analysis, we aimed to discern the recurring trends and themes within the research on BCT in relation to agrifood systems. Furthermore, this study examines a diverse array of research domains, prominent scholarly publications, leading publishing platforms, prominent funding institutions, and the prospective trajectory of future research. This study also presents the prominent patterns and themes within this field through an analysis of the most influential scholarly articles, authors, countries, and keywords found in the existing literature. Hence, this research employed various analytical techniques, including analyzing the co-occurrence of author keywords, bibliographic coupling analysis, network view map analysis, and co-citation analysis. This study holds promise as a valuable learning resource for aspiring researchers seeking to acquire compelling and pertinent information about research outcomes from studies on the utilisation of BCT in the field of smart agriculture.
Detecting cassava mosaic disease using a deep residual convolutional neural network with distinct block processing
For people in developing countries, cassava is a major source of calories and carbohydrates. However, Cassava Mosaic Disease (CMD) has become a major cause of concern among farmers in sub-Saharan Africa countries, which rely on cassava for both business and local consumption. The article proposes a novel deep residual convolution neural network (DRNN) for CMD detection in cassava leaf images. With the aid of distinct block processing, we can counterbalance the imbalanced image dataset of the cassava diseases and increase the number of images available for training and testing. Moreover, we adjust low contrast using Gamma correction and decorrelation stretching to enhance the color separation of an image with significant band-to-band correlation. Experimental results demonstrate that using a balanced dataset of images increases the accuracy of classification. The proposed DRNN model outperforms the plain convolutional neural network (PCNN) by a significant margin of 9.25% on the Cassava Disease Dataset from Kaggle.
An Ensemble Learning Model for COVID-19 Detection from Blood Test Samples
Current research endeavors in the application of artificial intelligence (AI) methods in the diagnosis of the COVID-19 disease has proven indispensable with very promising results. Despite these promising results, there are still limitations in real-time detection of COVID-19 using reverse transcription polymerase chain reaction (RT-PCR) test data, such as limited datasets, imbalance classes, a high misclassification rate of models, and the need for specialized research in identifying the best features and thus improving prediction rates. This study aims to investigate and apply the ensemble learning approach to develop prediction models for effective detection of COVID-19 using routine laboratory blood test results. Hence, an ensemble machine learning-based COVID-19 detection system is presented, aiming to aid clinicians to diagnose this virus effectively. The experiment was conducted using custom convolutional neural network (CNN) models as a first-stage classifier and 15 supervised machine learning algorithms as a second-stage classifier: K-Nearest Neighbors, Support Vector Machine (Linear and RBF), Naive Bayes, Decision Tree, Random Forest, MultiLayer Perceptron, AdaBoost, ExtraTrees, Logistic Regression, Linear and Quadratic Discriminant Analysis (LDA/QDA), Passive, Ridge, and Stochastic Gradient Descent Classifier. Our findings show that an ensemble learning model based on DNN and ExtraTrees achieved a mean accuracy of 99.28% and area under curve (AUC) of 99.4%, while AdaBoost gave a mean accuracy of 99.28% and AUC of 98.8% on the San Raffaele Hospital dataset, respectively. The comparison of the proposed COVID-19 detection approach with other state-of-the-art approaches using the same dataset shows that the proposed method outperforms several other COVID-19 diagnostics methods.
Blockchain in Agriculture to Ensure Trust, Effectiveness, and Traceability from Farm Fields to Groceries
Despite its status as one of the most ancient sectors worldwide, agriculture continues to be a fundamental cornerstone of the global economy. Nevertheless, it faces obstacles such as a lack of trust, difficulties in tracking, and inefficiencies in managing the supply chain. This article examines the potential of blockchain technology (BCT) to alter the agricultural industry by providing a decentralized, transparent, and unchangeable solution to meet the difficulties it faces. The initial discussion provides an overview of the challenges encountered by the agricultural industry, followed by a thorough analysis of BCT, highlighting its potential advantages. Following that, the article explores other agricultural uses for blockchain technology, such as managing supply chains, verifying products, and processing payments. In addition, this paper examines the constraints and challenges related to the use of blockchain technology in agriculture, including issues such as scalability, legal frameworks, and interoperability. This paper highlights the potential of BCT to transform the agricultural industry by offering a transparent and secure platform for managing the supply chain. Nevertheless, it emphasizes the need for involving stakeholders, having clear legislation, and possessing technical skills in order to achieve effective implementation. This work utilizes a systematic literature review using the PRISMA technique and applies meta-analysis as the research methodology, enabling a thorough investigation of the present information available. The results emphasize the significant and positive effect of BCT on agriculture, emphasizing the need for cooperative endeavors among governments, industry pioneers, and technology specialists to encourage its extensive implementation and contribute to the advancement of a sustainable and resilient food system.
Windows PE Malware Detection Using Ensemble Learning
In this Internet age, there are increasingly many threats to the security and safety of users daily. One of such threats is malicious software otherwise known as malware (ransomware, Trojans, viruses, etc.). The effect of this threat can lead to loss or malicious replacement of important information (such as bank account details, etc.). Malware creators have been able to bypass traditional methods of malware detection, which can be time-consuming and unreliable for unknown malware. This motivates the need for intelligent ways to detect malware, especially new malware which have not been evaluated or studied before. Machine learning provides an intelligent way to detect malware and comprises two stages: feature extraction and classification. This study suggests an ensemble learning-based method for malware detection. The base stage classification is done by a stacked ensemble of fully-connected and one-dimensional convolutional neural networks (CNNs), whereas the end-stage classification is done by a machine learning algorithm. For a meta-learner, we analyzed and compared 15 machine learning classifiers. For comparison, five machine learning algorithms were used: naïve Bayes, decision tree, random forest, gradient boosting, and AdaBoosting. The results of experiments made on the Windows Portable Executable (PE) malware dataset are presented. The best results were obtained by an ensemble of seven neural networks and the ExtraTrees classifier as a final-stage classifier.
MobileNet-SVM: A Lightweight Deep Transfer Learning Model to Diagnose BCH Scans for IoMT-Based Imaging Sensors
Many individuals worldwide pass away as a result of inadequate procedures for prompt illness identification and subsequent treatment. A valuable life can be saved or at least extended with the early identification of serious illnesses, such as various cancers and other life-threatening conditions. The development of the Internet of Medical Things (IoMT) has made it possible for healthcare technology to offer the general public efficient medical services and make a significant contribution to patients’ recoveries. By using IoMT to diagnose and examine BreakHis v1 400× breast cancer histology (BCH) scans, disorders may be quickly identified and appropriate treatment can be given to a patient. Imaging equipment having the capability of auto-analyzing acquired pictures can be used to achieve this. However, the majority of deep learning (DL)-based image classification approaches are of a large number of parameters and unsuitable for application in IoMT-centered imaging sensors. The goal of this study is to create a lightweight deep transfer learning (DTL) model suited for BCH scan examination and has a good level of accuracy. In this study, a lightweight DTL-based model “MobileNet-SVM”, which is the hybridization of MobileNet and Support Vector Machine (SVM), for auto-classifying BreakHis v1 400× BCH images is presented. When tested against a real dataset of BreakHis v1 400× BCH images, the suggested technique achieved a training accuracy of 100% on the training dataset. It also obtained an accuracy of 91% and an F1-score of 91.35 on the test dataset. Considering how complicated BCH scans are, the findings are encouraging. The MobileNet-SVM model is ideal for IoMT imaging equipment in addition to having a high degree of precision. According to the simulation findings, the suggested model requires a small computation speed and time.