Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Is Full-Text Available
      Is Full-Text Available
      Clear All
      Is Full-Text Available
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Subject
    • Country Of Publication
    • Publisher
    • Source
    • Language
    • Place of Publication
    • Contributors
    • Location
2,220 result(s) for "Mitchell, Michael J"
Sort by:
Biotechnology: Overcoming biological barriers to nucleic acid delivery using lipid nanoparticles
The promise of therapeutic nucleic acids has long been tempered by difficulty in overcoming biological barriers to their delivery. The past two decades have seen the development of ionizable lipid nanoparticles as a vehicle for nucleic acid delivery and their translation to the clinic.
Engineering precision nanoparticles for drug delivery
In recent years, the development of nanoparticles has expanded into a broad range of clinical applications. Nanoparticles have been developed to overcome the limitations of free therapeutics and navigate biological barriers — systemic, microenvironmental and cellular — that are heterogeneous across patient populations and diseases. Overcoming this patient heterogeneity has also been accomplished through precision therapeutics, in which personalized interventions have enhanced therapeutic efficacy. However, nanoparticle development continues to focus on optimizing delivery platforms with a one-size-fits-all solution. As lipid-based, polymeric and inorganic nanoparticles are engineered in increasingly specified ways, they can begin to be optimized for drug delivery in a more personalized manner, entering the era of precision medicine. In this Review, we discuss advanced nanoparticle designs utilized in both non-personalized and precision applications that could be applied to improve precision therapies. We focus on advances in nanoparticle design that overcome heterogeneous barriers to delivery, arguing that intelligent nanoparticle design can improve efficacy in general delivery applications while enabling tailored designs for precision applications, thereby ultimately improving patient outcome overall.Advances in nanoparticle design could make substantial contributions to personalized and non-personalized medicine. In this Review, Langer, Mitchell, Peppas and colleagues discuss advances in nanoparticle design that overcome heterogeneous barriers to delivery, as well as the challenges in translating these design improvements into personalized medicine approaches.
Engineering and physical sciences in oncology: challenges and opportunities
Key Points Engineers and physical scientists have pioneered research into understanding cancer as more than simply malignant cells with genetic mutations and instead as aberrant organs composed of cancer cells and their surrounding stroma, referred to as the tumour microenvironment (TME). Many aspects of the microenvironment are abnormal, which fuels tumour progression and treatment resistance. Recent work using advanced in vivo imaging, computational modelling and animal models has identified barriers in the TME that hinder therapy and promote tumour progression. Under pathological conditions, remodelling of the extracellular matrix (ECM) leads to fibre alignment, bundling and stiffening, which in turn alters tumour and stromal cell–matrix mechanics and interactions to enhance pro-angiogenic secretion from a range of cells in the TME as well as the migration of cancer cells. This promotes the invasion of tumour cells from the primary site into the circulation and the recruitment of endothelial cells for vascularization of the tumour to initiate tumour growth, invasion into the surrounding stroma and, finally, metastasis. Tumour cells with a larger glycocalyx than normal cells exhibit extended gaps between the membrane and ECM, clustering of integrins, the exclusion of glycopolymers from regions of integrin adhesion and membrane bending. Engineered glycoprotein mimetics have been used to study how the physical properties of the glycocalyx coating alter cellular signalling and promote tumour survival and metastasis. Drug delivery scientists pioneered the development of engineering systems that deliver therapeutics in a safe, effective and targeted fashion. Recent advances have focused on new delivery systems for cancer immunotherapy and gene therapy, as well as implantable devices for developing personalized medicine regimens. Engineers and physical scientists have advanced imaging in oncology through the development of macroscopic imaging techniques in clinical settings, in addition to intravital optical techniques used in research settings that are increasingly used to detect various biomarkers. Clinical imaging probes developed by engineers and material scientists, such as fluorescent proteins, nanomaterials and labelled small and large molecules, have complemented these modalities. Advances in microfluidics and microfabrication have led to the development of tissue and organ models that can incorporate physiological fluid flow and real-time optical imaging to study tumour cell migration and mechanotransduction. Microfluidics are also used to create human 'organs-on-chip' models for high-throughput drug screening, as well as isolation of rare circulating tumour cells and exosomes from patient blood samples. This Review by Mitchell et al . summarizes how engineering and the physical sciences have advanced oncology by highlighting four important areas: the physical microenvironment of the tumour, drug delivery, cellular and molecular imaging, and microfluidics and microfabrication. The principles of engineering and physics have been applied to oncology for nearly 50 years. Engineers and physical scientists have made contributions to all aspects of cancer biology, from quantitative understanding of tumour growth and progression to improved detection and treatment of cancer. Many early efforts focused on experimental and computational modelling of drug distribution, cell cycle kinetics and tumour growth dynamics. In the past decade, we have witnessed exponential growth at the interface of engineering, physics and oncology that has been fuelled by advances in fields including materials science, microfabrication, nanomedicine, microfluidics, imaging, and catalysed by new programmes at the National Institutes of Health (NIH), including the National Institute of Biomedical Imaging and Bioengineering (NIBIB), Physical Sciences in Oncology, and the National Cancer Institute (NCI) Alliance for Nanotechnology. Here, we review the advances made at the interface of engineering and physical sciences and oncology in four important areas: the physical microenvironment of the tumour and technological advances in drug delivery; cellular and molecular imaging; and microfluidics and microfabrication. We discussthe research advances, opportunities and challenges for integrating engineering and physical sciences with oncology to develop new methods to study, detect and treat cancer, and we also describe the future outlook for these emerging areas.
An ionizable lipid toolbox for RNA delivery
Recent years have witnessed incredible growth in RNA therapeutics, which has benefited significantly from decades of research on lipid nanoparticles, specifically its key component—the ionizable lipid. This comment discusses the major ionizable lipid types, and provides perspectives for future development. RNA therapeutics have benefited significantly from decades of research on lipid nanoparticles, specifically its key component—the ionizable lipid. This comment discusses the major ionizable lipid types, and provides perspectives for future development.
Ligand-tethered lipid nanoparticles for targeted RNA delivery to treat liver fibrosis
Lipid nanoparticle-mediated RNA delivery holds great potential to treat various liver diseases. However, targeted delivery of RNA therapeutics to activated liver-resident fibroblasts for liver fibrosis treatment remains challenging. Here, we develop a combinatorial library of anisamide ligand-tethered lipidoids (AA-lipidoids) using a one-pot, two-step modular synthetic method and adopt a two-round screening strategy to identify AA-lipidoids with both high potency and selectivity to deliver RNA payloads to activated fibroblasts. The lead AA-lipidoid AA-T3A-C12 mediates greater RNA delivery and transfection of activated fibroblasts than its analog without anisamide and the FDA-approved MC3 ionizable lipid. In a preclinical model of liver fibrosis, AA-T3A-C12 enables ~65% silencing of heat shock protein 47, a therapeutic target primarily expressed by activated fibroblasts, which is 2-fold more potent than MC3, leading to significantly reduced collagen deposition and liver fibrosis. These results demonstrate the potential of AA-lipidoids for targeted RNA delivery to activated fibroblasts. Furthermore, these synthetic methods and screening strategies open a new avenue to develop and discover potent lipidoids with targeting properties, which can potentially enable RNA delivery to a range of cell and tissue types that are challenging to access using traditional lipid nanoparticle formulations. Gene delivery to fibroblasts for liver fibrosis treatment remains challenging. Here the authors develop a combinatorial library of ligand-tethered lipidoids via a modular synthetic method and adopt a 2-round screening strategy to identify lipidoids for potent and selective gene delivery to fibroblasts.
Rerouting nanoparticles to bone marrow via neutrophil hitchhiking
Drug delivery to the bone marrow has limited efficiency, hitchhiking on bone marrow homing neutrophils offers a solution.
High-throughput barcoding of nanoparticles identifies cationic, degradable lipid-like materials for mRNA delivery to the lungs in female preclinical models
Lipid nanoparticles for delivering mRNA therapeutics hold immense promise for the treatment of a wide range of lung-associated diseases. However, the lack of effective methodologies capable of identifying the pulmonary delivery profile of chemically distinct lipid libraries poses a significant obstacle to the advancement of mRNA therapeutics. Here we report the implementation of a barcoded high-throughput screening system as a means to identify the lung-targeting efficacy of cationic, degradable lipid-like materials. We combinatorially synthesize 180 cationic, degradable lipids which are initially screened in vitro. We then use barcoding technology to quantify how the selected 96 distinct lipid nanoparticles deliver DNA barcodes in vivo. The top-performing nanoparticle formulation delivering Cas9-based genetic editors exhibits therapeutic potential for antiangiogenic cancer therapy within a lung tumor model in female mice. These data demonstrate that employing high-throughput barcoding technology as a screening tool for identifying nanoparticles with lung tropism holds potential for the development of next-generation extrahepatic delivery platforms. Identifying pulmonary delivery of lipid libraries poses an obstacle for mRNA drugs. Here, the authors use a barcoded screening system to identify lung-targeting of cationic, degradable lipid-like materials for mRNA delivery and gene editing in female preclinical models.
Lipid-mediated intracellular delivery of recombinant bioPROTACs for the rapid degradation of undruggable proteins
Recently, targeted degradation has emerged as a powerful therapeutic modality. Relying on “event-driven” pharmacology, proteolysis targeting chimeras (PROTACs) can degrade targets and are superior to conventional inhibitors against undruggable proteins. Unfortunately, PROTAC discovery is limited by warhead scarcity and laborious optimization campaigns. To address these shortcomings, analogous protein-based heterobifunctional degraders, known as bioPROTACs, have been developed. Compared to small-molecule PROTACs, bioPROTACs have higher success rates and are subject to fewer design constraints. However, the membrane impermeability of proteins severely restricts bioPROTAC deployment as a generalized therapeutic modality. Here, we present an engineered bioPROTAC template able to complex with cationic and ionizable lipids via electrostatic interactions for cytosolic delivery. When delivered by biocompatible lipid nanoparticles, these modified bioPROTACs can rapidly degrade intracellular proteins, exhibiting near-complete elimination (up to 95% clearance) of targets within hours of treatment. Our bioPROTAC format can degrade proteins localized to various subcellular compartments including the mitochondria, nucleus, cytosol, and membrane. Moreover, substrate specificity can be easily reprogrammed, allowing modular design and targeting of clinically-relevant proteins such as Ras, Jnk, and Erk. In summary, this work introduces an inexpensive, flexible, and scalable platform for efficient intracellular degradation of proteins that may elude chemical inhibition. Targeted degradation has emerged as a powerful therapeutic modality. In this study, the authors develop a lipid-based platform to deliver recombinant bioPROTACs into cells for targeted protein degradation, providing a platform for efficient intracellular degradation of proteins that may elude chemical inhibition.
In situ combinatorial synthesis of degradable branched lipidoids for systemic delivery of mRNA therapeutics and gene editors
The ionizable lipidoid is a key component of lipid nanoparticles (LNPs). Degradable lipidoids containing extended alkyl branches have received tremendous attention, yet their optimization and investigation are underappreciated. Here, we devise an in situ construction method for the combinatorial synthesis of degradable branched (DB) lipidoids. We find that appending branch tails to inefficacious lipidoids via degradable linkers boosts mRNA delivery efficiency up to three orders of magnitude. Combinatorial screening and systematic investigation of two libraries of DB-lipidoids reveal important structural criteria that govern their in vivo potency. The lead DB-LNP demonstrates robust delivery of mRNA therapeutics and gene editors into the liver. In a diet-induced obese mouse model, we show that repeated administration of DB-LNP encapsulating mRNA encoding human fibroblast growth factor 21 alleviates obesity and fatty liver. Together, we offer a construction strategy for high-throughput and cost-efficient synthesis of DB-lipidoids. This study provides insights into branched lipidoids for efficient mRNA delivery. Branched ionizable lipids have aroused great interest for mRNA delivery. Here, the authors devise an in situ construction method for combinatorial synthesis of degradable branched ionizable lipids and summarize key design criteria to enable potent delivery of mRNA therapeutics and gene editors.