Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
22
result(s) for
"Mitra, Sharmistha"
Sort by:
Targeting Gys1 with AAV‐SaCas9 Decreases Pathogenic Polyglucosan Bodies and Neuroinflammation in Adult Polyglucosan Body and Lafora Disease Mouse Models
by
Wu, Jun
,
Nitschke, Felix
,
Verhalen, Brandy
in
AAV9
,
Amyotrophic lateral sclerosis
,
Animal models
2021
Many adult and most childhood neurological diseases have a genetic basis. CRISPR/Cas9 biotechnology holds great promise in neurological therapy, pending the clearance of major delivery, efficiency, and specificity hurdles. We applied CRISPR/Cas9 genome editing in its simplest modality, namely inducing gene sequence disruption, to one adult and one pediatric disease. Adult polyglucosan body disease is a neurodegenerative disease resembling amyotrophic lateral sclerosis. Lafora disease is a severe late childhood onset progressive myoclonus epilepsy. The pathogenic insult in both is formation in the brain of glycogen with overlong branches, which precipitates and accumulates into polyglucosan bodies that drive neuroinflammation and neurodegeneration. We packaged Staphylococcus aureus Cas9 and a guide RNA targeting the glycogen synthase gene, Gys1, responsible for brain glycogen branch elongation in AAV9 virus, which we delivered by neonatal intracerebroventricular injection to one mouse model of adult polyglucosan body disease and two mouse models of Lafora disease. This resulted, in all three models, in editing of approximately 17% of Gys1 alleles and a similar extent of reduction of Gys1 mRNA across the brain. The latter led to approximately 50% reductions of GYS1 protein, abnormal glycogen accumulation, and polyglucosan bodies, as well as ameliorations of neuroinflammatory markers in all three models. Our work represents proof of principle for virally delivered CRISPR/Cas9 neurotherapeutics in an adult-onset (adult polyglucosan body) and a childhood-onset (Lafora) neurological diseases.
Journal Article
Laforin targets malin to glycogen in Lafora progressive myoclonus epilepsy
2023
Glycogen is the largest cytosolic macromolecule and is kept in solution through a regular system of short branches allowing hydration. This structure was thought to solely require balanced glycogen synthase and branching enzyme activities. Deposition of overlong branched glycogen in the fatal epilepsy Lafora disease (LD) indicated involvement of the LD gene products laforin and the E3 ubiquitin ligase malin in regulating glycogen structure. Laforin binds glycogen, and LD-causing mutations disrupt this binding, laforin–malin interactions and malin's ligase activity, all indicating a critical role for malin. Neither malin's endogenous function nor location had previously been studied due to lack of suitable antibodies. Here, we generated a mouse in which the native malin gene is tagged with the FLAG sequence. We show that the tagged gene expresses physiologically, malin localizes to glycogen, laforin and malin indeed interact, at glycogen, and malin's presence at glycogen depends on laforin. These results, and mice, open the way to understanding unknown mechanisms of glycogen synthesis critical to LD and potentially other much more common diseases due to incompletely understood defects in glycogen metabolism.
Journal Article
Lafora disease — from pathogenesis to treatment strategies
2018
Lafora disease is a severe, autosomal recessive, progressive myoclonus epilepsy. The disease usually manifests in previously healthy adolescents, and death commonly occurs within 10 years of symptom onset. Lafora disease is caused by loss-of-function mutations in EPM2A or NHLRC1, which encode laforin and malin, respectively. The absence of either protein results in poorly branched, hyperphosphorylated glycogen, which precipitates, aggregates and accumulates into Lafora bodies. Evidence from Lafora disease genetic mouse models indicates that these intracellular inclusions are a principal driver of neurodegeneration and neurological disease. The integration of current knowledge on the function of laforin–malin as an interacting complex suggests that laforin recruits malin to parts of glycogen molecules where overly long glucose chains are forming, so as to counteract further chain extension. In the absence of either laforin or malin function, long glucose chains in specific glycogen molecules extrude water, form double helices and drive precipitation of those molecules, which over time accumulate into Lafora bodies. In this article, we review the genetic, clinical, pathological and molecular aspects of Lafora disease. We also discuss traditional antiseizure treatments for this condition, as well as exciting therapeutic advances based on the downregulation of brain glycogen synthesis and disease gene replacement.
Journal Article
Backbone ¹H, ∨15N, and ∨13C resonance assignments and secondary structure of the tollip CUE domain
by
Ayala, Iriscilla, Virginia Polytechnic Institute and state University, Blacksburg, VA, USA
,
Azurmendi, Hugo F., Virginia Polytechnic Institute and state University, Blacksburg, VA, USA
,
Finkielstein, Carla V., Virginia Polytechnic Institute and state University, Blacksburg, VA, USA
in
Biochemistry
,
Biomedical and Life Sciences
,
Biomedicine
2010
The Toll-interacting protein (Tollip) is a negative regulator of the Toll-like receptor (TLR)-mediated inflammation response. Tollip is a modular protein that contains an N-terminal Tom1-binding domain (TBD), a central conserved domain 2 (C2), and a C-terminal coupling of ubiquitin to endoplasmic reticulum degradation (CUE) domain. Here, we report the sequence-specific backbone ¹H, ∨15N, and ∨13C assignments of the human Tollip CUE domain. The CUE domain was found to be a stable dimer as determined by size-exclusion chromatography and molecular crosslinking studies. Analysis of the backbone chemical shift data indicated that the CUE domain exhibits three helical elements corresponding to 52% of the protein backbone. Circular dichroism spectrum analysis confirmed the helical nature of this domain. Comparison of the location of these helical regions with those reported for yeast CUE domains suggest differences in length for all helical elements. We expect the structural analysis presented here will be the foundation for future studies on the biological significance of the Tollip CUE domain, its molecular interactions, and the mechanisms that modulate its function during the inflammatory response.
Journal Article
A New Decision Theoretic Sampling Plan for Type-I and Type-I Hybrid Censored Samples from the Exponential Distribution
by
Kundu, Debasis
,
Mitra, Sharmistha
,
Prajapati, Deepak
in
Mathematics and Statistics
,
Statistics
2019
The study proposes a new decision theoretic sampling plan (DSP) for Type-I and Type-I hybrid censored samples when the lifetimes of individual items are exponentially distributed with a scale parameter. The DSP is based on an estimator of the scale parameter which always exists, unlike the MLE which may not always exist. Using a quadratic loss function and a decision function based on the proposed estimator, a DSP is derived. To obtain the optimum DSP, a finite algorithm is used. Numerical results demonstrate that in terms of the Bayes risk, the optimum DSP is as good as the Bayesian sampling plan (BSP) proposed by Lin et al. (2002) and Liang and Yang (2013). The proposed DSP performs better than the sampling plan of Lam (1994) andLinetal.(2008a) in terms of Bayes risks. The main advantage of the proposed DSP is that for higher degree polynomial and non-polynomial loss functions, it can be easily obtained as compared to the BSP.
Journal Article
Myofiber-type-dependent ‘boulder’ or ‘multitudinous pebble’ formations across distinct amylopectinoses
2024
At least five enzymes including three E3 ubiquitin ligases are dedicated to glycogen’s spherical structure. Absence of any reverts glycogen to a structure resembling amylopectin of the plant kingdom. This amylopectinosis (polyglucosan body formation) causes fatal neurological diseases including adult polyglucosan body disease (APBD) due to glycogen branching enzyme deficiency, Lafora disease (LD) due to deficiencies of the laforin glycogen phosphatase or the malin E3 ubiquitin ligase and type 1 polyglucosan body myopathy (PGBM1) due to RBCK1 E3 ubiquitin ligase deficiency. Little is known about these enzymes’ functions in glycogen structuring. Toward understanding these functions, we undertake a comparative murine study of the amylopectinoses of APBD, LD and PGBM1. We discover that in skeletal muscle, polyglucosan bodies form as two main types, small and multitudinous (‘pebbles’) or giant and single (‘boulders’), and that this is primarily determined by the myofiber types in which they form, ‘pebbles’ in glycolytic and ‘boulders’ in oxidative fibers. This pattern recapitulates what is known in the brain in LD, innumerable dust-like in astrocytes and single giant sized in neurons. We also show that oxidative myofibers are relatively protected against amylopectinosis, in part through highly increased glycogen branching enzyme expression. We present evidence of polyglucosan body size-dependent cell necrosis. We show that sex influences amylopectinosis in genotype, brain region and myofiber-type-specific fashion. RBCK1 is a component of the linear ubiquitin chain assembly complex (LUBAC), the only known cellular machinery for head-to-tail linear ubiquitination critical to numerous cellular pathways. We show that the amylopectinosis of RBCK1 deficiency is not due to loss of linear ubiquitination, and that another function of RBCK1 or LUBAC must exist and operate in the shaping of glycogen. This work opens multiple new avenues toward understanding the structural determinants of the mammalian carbohydrate reservoir critical to neurologic and neuromuscular function and disease.
Journal Article
Ubiquitin Modulates Tollip's PtdIns3P Binding and Dissociates the Dimeric State of C-Terminal CUES Domain
2013
Ubiquitylation is a highly controlled post-translational modification of proteins, in which proteins are conjugated either with monoubiquitin or polyubiquitin chains. Ubiquitin modifications on target proteins are recognized by ubiquitin-binding domains, which are found in several effector proteins. In this study, we describe for the first time how ubiquitin controls the function of the Toll-interacting protein (Tollip), which is an effector protein in the innate immune signaling pathway and an adaptor protein for endosomal trafficking. We have demonstrated that the central C2 domain of Tollip preferentially interacts with phosphoinositides with moderate affinity. Remarkably, we found that ubiquitin modulates Tollip's lipid binding. We have observed an ubiquitin dose-dependent inhibition of binding of Tollip to phosphoinositides and it does so specifically by blocking Tollip C2 domain-phosphoinositide interactions. This led us to discover that the Tollip C2 domain is a novel ubiquitin-binding domain. In addition, we have biophysically characterized the association of the Tollip CUE domain to ubiquitin and compared it with Tollip C2 domain-ubiquitin binding. The Tollip CUE domain reversibly binds ubiquitin with affinity higher than C2 domain and at a site that overlaps with that corresponding to the Tollip C2 domain. We have also found that ubiquitin binding to dimeric Tollip CUE domain induces a drastic conformational change in the protein, leading to the formation of a heterodimeric Tollip CUE-ubiquitin complex. These data suggest that ubiquitin binding to the Tollip C2 and CUE domains and ubiquitin-mediated dissociation of CUE dimer reduces the affinity of the Tollip protein for endosomal phosphoinositides, allowing Tollip’s cytoplasmic sequestration. Overall, our findings will provide the structural and molecular basis to understand how Tollip works inside the cell and commit itself to cytosolic signalling or endosomal trafficking in a ligand dependent manner.
Dissertation
Backbone ^sup 1^H, ^sup 15^N, and ^sup 13^C resonance assignments and secondary structure of the tollip CUE domain
2010
The Toll-interacting protein (Tollip) is a negative regulator of the Toll-like receptor (TLR)-mediated inflammation response. Tollip is a modular protein that contains an Nterminal Tom1-binding domain (TBD), a central conserved domain 2 (C2), and a C-terminal coupling of ubiquitin to endoplasmic reticulum degradation (CUE) domain. Here, we report the sequence-specific backbone ^sup 1^H, ^sup 15^N, and ^sup 13^C assignments of the human Tollip CUE domain. The CUE domain was found to be a stable dimer as determined by size-exclusion chromatography and molecular crosslinking studies. Analysis of the backbone chemical shift data indicated that the CUE domain exhibits three helical elements corresponding to 52% of the protein backbone. Circular dichroism spectrum analysis confirmed the helical nature of this domain. Comparison of the location of these helical regions with those reported for yeast CUE domains suggest differences in length for all helical elements. We expect the structural analysis presented here will be the foundation for future studies on the biological significance of the Tollip CUE domain, its molecular interactions, and the mechanisms that modulate its function during the inflammatory response.[PUBLICATION ABSTRACT]
Journal Article
Backbone (1)H, (15)N, and (13)C Resonance Assign-ments and Secondary Structure of the Tollip CUE Domain
2010
The Toll-interacting protein (Tollip) is a negative regulator of the Toll-like receptor (TLR)-mediated inflammation response.
Tollip is a modular protein that contains an Nterminal Tom1-binding domain (TBD), a central conserved domain 2 (C2), and a C-terminal coupling of ubiquitin to endoplasmic reticulum degradation (CUE) domain. Here,we report the sequence-specific backbone 1H, 15N, and 13C assignments of the human Tollip CUE domain. The CUE domain was found to be a stable dimer as determined by size-exclusion chromatography and molecular crosslinking studies. Analysis of the backbone chemical shift data indicated that the CUE domain exhibits three helical elements corresponding to 52% of the protein backbone.
Circular dichroism spectrum analysis confirmed the helical nature of this domain. Comparison of the location of these helical regions with those reported for yeast CUE domains suggest differences in length for all helical elements.
We expect the structural analysis presented here will be the foundation for future studies on the biological significance of the Tollip CUE domain, its molecular interactions,and the mechanisms that modulate its function during the inflammatory response. KCI Citation Count: 9
Journal Article
Backbone $^1H$, $^{15}N$, and $^{13}C$ Resonance Assignments and Secondary Structure of the Tollip CUE Domain
2010
The Toll-interacting protein (Tollip) is a negative regulator of the Toll-like receptor (TLR)-mediated inflammation response. Tollip is a modular protein that contains an N-terminal $\\underline{T}om1$-$\\underline{b}inding$ $\\underline{d}omain$ (TBD), a central $\\underline{c}$onserved domain $\\underline{2}$ (C2), and a C-terminal $\\underline{c}$oupling of $\\underline{u}$biquitin to $\\underline{e}$ndoplasmic reticulum degradation (CUE) domain. Here, we report the sequence-specific backbone $^1H$, $^{15}N$, and $^{13}C$ assignments of the human Tollip CUE domain. The CUE domain was found to be a stable dimer as determined by size-exclusion chromatography and molecular cross-linking studies. Analysis of the backbone chemical shift data indicated that the CUE domain exhibits three helical elements corresponding to 52% of the protein backbone. Circular dichroism spectrum analysis confirmed the helical nature of this domain. Comparison of the location of these helical regions with those reported for yeast CUE domains suggest differences in length for all helical elements. We expect the structural analysis presented here will be the foundation for future studies on the biological significance of the Tollip CUE domain, its molecular interactions, and the mechanisms that modulate its function during the inflammatory response.
Journal Article