Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
180
result(s) for
"Mitragotri, Samir"
Sort by:
Healing sound: the use of ultrasound in drug delivery and other therapeutic applications
by
Mitragotri, Samir
in
Animals
,
Anti-Inflammatory Agents - administration & dosage
,
Anticoagulants - administration & dosage
2005
Ultrasound, which is routinely used for diagnostic imaging applications, is now being adopted in various drug delivery and other therapeutic applications. Ultrasound has been shown to facilitate the delivery of drugs across the skin, promote gene therapy to targeted tissues, deliver chemotherapeutic drugs into tumours and deliver thrombolytic drugs into blood clots. In addition, ultrasound has also been shown to facilitate the healing of wounds and bone fractures. This article reviews the principles and current status of ultrasound-based treatments.
Journal Article
Nanoparticles in the clinic: An update
2019
Nanoparticle drug delivery systems have been used in the clinic since the early 1990's. Since that time, the field of nanomedicine has evolved alongside growing technological needs to improve the delivery of various therapeutics. Over these past decades, newer generations of nanoparticles have emerged that are capable of performing additional delivery functions that can enable treatment via new therapeutic modalities. In the current clinical landscape, many of these new generation nanoparticles have reached clinical trials and have been approved for various indications. In the first issue of Bioengineering & Translational Medicine in 2016, we reviewed the history, current clinical landscape, and clinical challenges of nanoparticle delivery systems. Here, we provide a 3 year update on the current clinical landscape of nanoparticle drug delivery systems and highlight newly approved nanomedicines, provide a status update on previous clinical trials, and highlight new technologies that have recently entered the clinic.
Journal Article
Materials for oral delivery of proteins and peptides
by
Mitragotri, Samir
,
Whitehead, Kathryn A.
,
Brown, Tyler D.
in
631/1647/350
,
631/61/51/2313
,
639/301/54/152
2020
Throughout history, oral administration has been regarded as the most convenient mode of drug delivery, as it requires minimal expertise and invasiveness. Although oral delivery works well for small-molecule drugs, oral delivery of macromolecules (particularly proteins and peptides) has been limited by acidic conditions in the stomach and low permeability across the intestinal epithelium. Accordingly, the large numbers of biologic drugs that have become available in the past 10 years typically require administration by injection or infusion. As such, a renewed emphasis has been placed on the development of novel materials that overcome the physiological challenges of oral delivery for macromolecular agents. This Review provides an overview of physiological barriers to the oral delivery of biologics and highlights the advances made in materials across various length scales, from small molecules to macroscopic devices. This Review also describes the current status of materials for oral delivery of protein and peptide drugs.
New materials, beyond those that have already obtained regulatory approval, are needed to improve the bioavailability of orally administered proteins. In this Review, barriers to the oral delivery of protein-based therapies are discussed, along with the current translational landscape and state of the art of materials for oral protein delivery.
Journal Article
Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies
2014
Key Points
Biopharmaceutical drugs such as antibodies, peptides and recombinant proteins have high specificity and potency compared to small molecules. These features arise from their macromolecular composition, which provides the structural complexity that is often required for specificity.
However, this structural complexity means that biopharmaceutical drugs are large and susceptible to degradation, which makes it challenging to formulate and deliver them. These drugs also have reduced permeation across biological barriers, which complicates their delivery to specific sites or intracellular targets.
In this Review we highlight recent advances in formulation and delivery strategies that have facilitated the transformation of product portfolios and development pipelines by this class of compounds. These advances include the use of microsphere-based sustained-release technologies, protein modification methods that make use of polyethylene glycol and other polymers, as well as genetic manipulation of biopharmaceutical drugs such as Fc- and albumin-fusions.
We also highlight current and emerging delivery routes that provide alternatives to injection, including transdermal, oral and pulmonary delivery.
Current areas of formulation and delivery research show promise for the application of biopharmaceutical drugs to tumour immunotherapy using nanoparticle technology, tissue engineering and enhanced approaches to cell-based therapy.
These delivery methods could be used for the targeted delivery of proteins to the brain, which could have implications in the treatment of a wide range of central nervous system disorders. These technologies could potentially increase the effectiveness of conventional approaches that have not yet translated to the clinic, although they have had promising preclinical results.
Intracellular delivery of proteins and peptides is a new frontier in delivery research, which could dramatically augment the breadth of targets amenable to biopharmaceutical drug therapy.
Biological drugs offer high specificity and potency, but their formulation and delivery pose substantial challenges. Here, the authors highlight recent advances in formulation strategies, describe current and emerging delivery routes and review the potential of targeted and intracellular delivery of biologics.
The formulation and delivery of biopharmaceutical drugs, such as monoclonal antibodies and recombinant proteins, poses substantial challenges owing to their large size and susceptibility to degradation. In this Review we highlight recent advances in formulation and delivery strategies — such as the use of microsphere-based controlled-release technologies, protein modification methods that make use of polyethylene glycol and other polymers, and genetic manipulation of biopharmaceutical drugs — and discuss their advantages and limitations. We also highlight current and emerging delivery routes that provide an alternative to injection, including transdermal, oral and pulmonary delivery routes. In addition, the potential of targeted and intracellular protein delivery is discussed.
Journal Article
Nanoparticles in the clinic: An update post COVID‐19 vaccines
2021
Nanoparticles are used in the clinic to treat cancer, resolve mineral deficiencies, image tissues, and facilitate vaccination. As a modular technology, nanoparticles combine diagnostic agents or therapeutics (e.g., elements, small molecules, biologics), synthetic materials (e.g., polymers), and biological molecules (e.g., antibodies, peptides, lipids). Leveraging these parameters, nanoparticles can be designed and tuned to navigate biological microenvironments, negotiate biological barriers, and deliver therapeutics or diagnostic agents to specific cells and tissues in the body. Recently, with the Emergency Use Authorization of the COVID‐19 lipid nanoparticle vaccines, the advantages and potential of nanoparticles as a delivery vehicle have been displayed at the forefront of biotechnology. Here, we provide a 5‐year status update on our original “Nanoparticles in the Clinic” review (also a 2‐year update on our second “Nanoparticles in the Clinic” review) by discussing recent nanoparticle delivery system approvals, highlighting new clinical trials, and providing an update on the previously highlighted clinical trials.
Journal Article
PEGylated therapeutics in the clinic
by
Joshi, Maithili
,
Zhao, Zongmin
,
Mitragotri, Samir
in
Biological products
,
clinic
,
clinical translation
2024
The covalent attachment of polyethylene glycol (PEG) to therapeutic agents, termed PEGylation, is a well‐established and clinically proven drug delivery approach to improve the pharmacokinetics and pharmacodynamics of drugs. Specifically, PEGylation can improve the parent drug's solubility, extend its circulation time, and reduce its immunogenicity, with minimal undesirable properties. PEGylation technology has been applied to various therapeutic modalities including small molecules, aptamers, peptides, and proteins, leading to over 30 PEGylated drugs currently used in the clinic and many investigational PEGylated agents under clinical trials. Here, we summarize the diverse types of PEGylation strategies, the key advantages of PEGylated therapeutics over their parent drugs, and the broad applications and impacts of PEGylation in clinical settings. A particular focus has been given to the size, topology, and functionalities of PEG molecules utilized in clinically used PEGylated drugs, as well as those under clinical trials. An additional section has been dedicated to analyzing some representative PEGylated drugs that were discontinued at different stages of clinical studies. Finally, we critically discuss the current challenges faced in the development and clinical translation of PEGylated agents.
Journal Article
Effect of Chemical Permeation Enhancers on Skin Permeability: In silico screening using Molecular Dynamics simulations
2019
Breaching of the skin barrier is essential for delivering active pharmaceutical ingredients (APIs) for pharmaceutical, dermatological and aesthetic applications. Chemical permeation enhancers (CPEs) are molecules that interact with the constituents of skin’s outermost and rate limiting layer stratum corneum (SC), and increase its permeability. Designing and testing of new CPEs is a resource intensive task, thus limiting the rate of discovery of new CPEs.
In-silico
screening of CPEs in a rigorous skin model could speed up the design of CPEs. In this study, we performed coarse grained (CG) molecule dynamics (MD) simulations of a multilayer skin lipid matrix in the presence of CPEs. The CPEs are chosen from different chemical functionalities including fatty acids, esters, and alcohols. A multi-layer
in-silico
skin model was developed. The CG parameters of permeation enhancers were also developed. Interactions of CPEs with SC lipids was studied
in silico
at three different CPE concentrations namely, 1% w/v, 3% w/v and 5% w/v. The partitioning and diffusion coefficients of CPEs in the SC lipids were found to be highly size- and structure-dependent and these dependencies are explained in terms of structural properties such as radial distribution function, area per lipid and order parameter. Finally, experimentally reported effects of CPEs on skin from the literature are compared with the simulation results. The trends obtained using simulations are in good agreement with the experimental measurements. The studies presented here validate the utility of
in-silico
models for designing, screening and testing of novel and effective CPEs.
Journal Article
The evolution of commercial drug delivery technologies
2021
Drug delivery technologies have enabled the development of many pharmaceutical products that improve patient health by enhancing the delivery of a therapeutic to its target site, minimizing off-target accumulation and facilitating patient compliance. As therapeutic modalities expanded beyond small molecules to include nucleic acids, peptides, proteins and antibodies, drug delivery technologies were adapted to address the challenges that emerged. In this Review Article, we discuss seminal approaches that led to the development of successful therapeutic products involving small molecules and macromolecules, identify three drug delivery paradigms that form the basis of contemporary drug delivery and discuss how they have aided the initial clinical successes of each class of therapeutic. We also outline how the paradigms will contribute to the delivery of live-cell therapies.
This Review Article discusses how delivery challenges associated with small molecules, nucleic acids, peptides, proteins and cells led to the development of commercial products and are now informing the delivery of live-cell therapeutics.
Journal Article
Ionic liquids for oral insulin delivery
by
Brown, Tyler
,
Chen, Renwei
,
Ibsen, Kelly
in
Administration, Oral
,
Animals
,
Applied Biological Sciences
2018
With the rise in diabetes mellitus cases worldwide and lack of patient adherence to glycemia management using injectable insulin, there is an urgent need for the development of efficient oral insulin formulations. However, the gastrointestinal tract presents a formidable barrier to oral delivery of biologics. Here we report the development of a highly effective oral insulin formulation using choline and geranate (CAGE) ionic liquid. CAGE significantly enhanced paracellular transport of insulin, while protecting it from enzymatic degradation and by interacting with the mucus layer resulting in its thinning. In vivo, insulin-CAGE demonstrated exceptional pharmacokinetic and pharmacodynamic outcome after jejunal administration in rats. Low insulin doses (3–10 U/kg) brought about a significant decrease in blood glucose levels, which were sustained for longer periods (up to 12 hours), unlike s.c. injected insulin. When 10 U/kg insulin-CAGE was orally delivered in enterically coated capsules using an oral gavage, a sustained decrease in blood glucose of up to 45% was observed. The formulation exhibited high biocompatibility and was stable for 2 months at room temperature and for at least 4 months under refrigeration. Taken together, the results indicate that CAGE is a promising oral delivery vehicle and should be further explored for oral delivery of insulin and other biologics that are currently marketed as injectables.
Journal Article
Delivery of siRNA and other macromolecules into skin and cells using a peptide enhancer
2011
Delivery of macromolecules into cells and tissues such as skin is a major challenge. This obstacle poses a particular challenge for the delivery of siRNA where cellular and tissue level transport barriers need to be overcome. siRNAs are potential therapeutics for various dermatological diseases including psoriasis, atopic dermatitis, and cancer; however, their utility is limited by their low absorption across the stratum corneum (SC) and into viable cells of skin. Here, we address this challenge using a peptide identified by phage display termed skin penetrating and cell entering (SPACE) peptide. In vitro studies indicated that the SPACE peptide, when conjugated to cargoes such as small molecules and proteins, was able to facilitate their penetration across the SC into epidermis and dermis. The peptide also exhibited increased penetration into various cells including keratinocytes, fibroblasts, and endothelial cells, likely through a macropinocytosis pathway. The ability of SPACE peptide to deliver siRNA was tested in vivo using two targets, interleukin-10 and GAPDH. Conjugation of the peptide to siRNA led to their enhanced absorption into skin and knockdown of corresponding protein targets.
Journal Article