Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
70 result(s) for "Mitzner, Wayne"
Sort by:
Super-achromatic monolithic microprobe for ultrahigh-resolution endoscopic optical coherence tomography at 800 nm
Endoscopic optical coherence tomography (OCT) has emerged as a valuable tool for advancing our understanding of the histomorphology of various internal luminal organs and studying the pathogenesis of relevant diseases. To date, this technology affords limited resolving power for discerning subtle pathological changes associated with early diseases. In addition, it remains challenging to access small luminal organs or pass through narrow luminal sections without potentially causing trauma to tissue with a traditional OCT endoscope of a 1-1.5 mm diameter. Here we report an ultracompact (520 µm in outer diameter and 5 mm in rigid length) and super-achromatic microprobe made with a built-in monolithic fiber-optic ball lens, which achieves ultrahigh-resolution (1.7 µm axial resolution in tissue and 6 µm transverse resolution) for endoscopic OCT imaging at 800 nm. Its performance and translational potential are demonstrated by in vivo imaging of a mouse colon, a rat esophagus, and small airways in sheep. Optical coherence tomography is an established optical tool for in vivo clinical imaging and diagnosis applications, but endoscopic technologies remain limited. Here, Yuan et al. develop a flexible, narrow diameter, super-achromatic endoscopic probe for ultrahigh-resolution in vivo OCT imaging of small luminal organs or narrow constrictions.
Telomere dysfunction causes alveolar stem cell failure
Significance Idiopathic pulmonary fibrosis and emphysema are leading causes of mortality, but there are no effective therapies. Mutations in telomerase are the most common identifiable risk factor for idiopathic pulmonary fibrosis. They also predispose to severe emphysema in smokers, occurring at a frequency similar to α-1 antitrypsin deficiency. The work shown here points to alveolar stem cell senescence as a driver of these pathologies. Epithelial stem cell failure was associated with secondary inflammatory recruitment and exquisite susceptibility to injury from “second hits.” The findings suggest that efforts to reverse the stem cell failure state directly, rather than its secondary consequences, may be an effective therapy approach in telomere-mediated lung disease. Telomere syndromes have their most common manifestation in lung disease that is recognized as idiopathic pulmonary fibrosis and emphysema. In both conditions, there is loss of alveolar integrity, but the underlying mechanisms are not known. We tested the capacity of alveolar epithelial and stromal cells from mice with short telomeres to support alveolar organoid colony formation and found that type 2 alveolar epithelial cells (AEC2s), the stem cell-containing population, were limiting. When telomere dysfunction was induced in adult AEC2s by conditional deletion of the shelterin component telomeric repeat-binding factor 2, cells survived but remained dormant and showed all the hallmarks of cellular senescence. Telomere dysfunction in AEC2s triggered an immune response, and this was associated with AEC2-derived up-regulation of cytokine signaling pathways that are known to provoke inflammation in the lung. Mice uniformly died after challenge with bleomycin, underscoring an essential role for telomere function in AEC2s for alveolar repair. Our data show that alveoloar progenitor senescence is sufficient to recapitulate the regenerative defects, inflammatory responses, and susceptibility to injury that are characteristic of telomere-mediated lung disease. They suggest alveolar stem cell failure is a driver of telomere-mediated lung disease and that efforts to reverse it may be clinically beneficial.
Progesterone-Based Therapy Protects Against Influenza by Promoting Lung Repair and Recovery in Females
Over 100 million women use progesterone therapies worldwide. Despite having immunomodulatory and repair properties, their effects on the outcome of viral diseases outside of the reproductive tract have not been evaluated. Administration of exogenous progesterone (at concentrations that mimic the luteal phase) to progesterone-depleted adult female mice conferred protection from both lethal and sublethal influenza A virus (IAV) infection. Progesterone treatment altered the inflammatory environment of the lungs, but had no effects on viral load. Progesterone treatment promoted faster recovery by increasing TGF-β, IL-6, IL-22, numbers of regulatory Th17 cells expressing CD39, and cellular proliferation, reducing protein leakage into the airway, improving pulmonary function, and upregulating the epidermal growth factor amphiregulin (AREG) in the lungs. Administration of rAREG to progesterone-depleted females promoted pulmonary repair and improved the outcome of IAV infection. Progesterone-treatment of AREG-deficient females could not restore protection, indicating that progesterone-mediated induction of AREG caused repair in the lungs and accelerated recovery from IAV infection. Repair and production of AREG by damaged respiratory epithelial cell cultures in vitro was increased by progesterone. Our results illustrate that progesterone is a critical host factor mediating production of AREG by epithelial cells and pulmonary tissue repair following infection, which has important implications for women's health.
Lack of antibody affinity maturation due to poor Toll-like receptor stimulation leads to enhanced respiratory syncytial virus disease
A formalin-inactivated vaccine from the 1960s against respiratory syncytial virus (RSV) failed to protect children. Although scientists thought that its failure resulted from formalin disruption of protective antigens, it is now shown that it resulted from low antibody avidity for protective epitopes after poor Toll-like receptor (TLR) stimulation. RSV vaccines could therefore become effective by including TLR agonists in their formulation ( pages 21–22 ). Respiratory syncytial virus (RSV) is a leading cause of hospitalization in infants. A formalin-inactivated RSV vaccine was used to immunize children and elicited nonprotective, pathogenic antibody. Immunized infants experienced increased morbidity after subsequent RSV exposure. No vaccine has been licensed since that time. A widely accepted hypothesis attributed the vaccine failure to formalin disruption of protective antigens. Here we show that the lack of protection was not due to alterations caused by formalin but instead to low antibody avidity for protective epitopes. Lack of antibody affinity maturation followed poor Toll-like receptor (TLR) stimulation. This study explains why the inactivated RSV vaccine did not protect the children and consequently led to severe disease, hampering vaccine development for 42 years. It also suggests that inactivated RSV vaccines may be rendered safe and effective by inclusion of TLR agonists in their formulation, and it identifies affinity maturation as a key factor for the safe immunization of infants.
Adverse outcomes in SARS-CoV-2–infected pregnant mice are gestational age–dependent and resolve with antiviral treatment
SARS-CoV-2 infection during pregnancy is associated with severe COVID-19 and adverse fetal outcomes, but the underlying mechanisms remain poorly understood. Moreover, clinical studies assessing therapeutics against SARS-CoV-2 in pregnancy are limited. To address these gaps, we developed a mouse model of SARS-CoV-2 infection during pregnancy. Outbred CD1 mice were infected at E6, E10, or E16 with a mouse-adapted SARS-CoV-2 (maSCV2) virus. Outcomes were gestational age-dependent, with greater morbidity, reduced antiviral immunity, greater viral titers, and impaired fetal growth and neurodevelopment occurring with infection at E16 (third trimester equivalent) than with infection at either E6 (first trimester equivalent) or E10 (second trimester equivalent). To assess the efficacy of ritonavir-boosted nirmatrelvir, which is recommended for individuals who are pregnant with COVID-19, we treated E16-infected dams with mouse-equivalent doses of nirmatrelvir and ritonavir. Treatment reduced pulmonary viral titers, decreased maternal morbidity, and prevented offspring growth restriction and neurodevelopmental impairments. Our results highlight that severe COVID-19 during pregnancy and fetal growth restriction is associated with heightened virus replication in maternal lungs. Ritonavir-boosted nirmatrelvir mitigated maternal morbidity along with fetal growth and neurodevelopment restriction after SARS-CoV-2 infection. These findings prompt the need for further consideration of pregnancy in preclinical and clinical studies of therapeutics against viral infections.
Angiotensin receptor blockade attenuates cigarette smoke–induced lung injury and rescues lung architecture in mice
Chronic obstructive pulmonary disease (COPD) is a prevalent smoking-related disease for which no disease-altering therapies currently exist. As dysregulated TGF-β signaling associates with lung pathology in patients with COPD and in animal models of lung injury induced by chronic exposure to cigarette smoke (CS), we postulated that inhibiting TGF-β signaling would protect against CS-induced lung injury. We first confirmed that TGF-β signaling was induced in the lungs of mice chronically exposed to CS as well as in COPD patient samples. Importantly, key pathological features of smoking-associated lung disease in patients, e.g., alveolar injury with overt emphysema and airway epithelial hyperplasia with fibrosis, accompanied CS-induced alveolar cell apoptosis caused by enhanced TGF-β signaling in CS-exposed mice. Systemic administration of a TGF-β-specific neutralizing antibody normalized TGF-β signaling and alveolar cell death, conferring improved lung architecture and lung mechanics in CS-exposed mice. Use of losartan, an angiotensin receptor type 1 blocker used widely in the clinic and known to antagonize TGF-β signaling, also improved oxidative stress, inflammation, metalloprotease activation and elastin remodeling. These data support our hypothesis that inhibition of TGF-β signaling through angiotensin receptor blockade can attenuate CS-induced lung injury in an established murine model. More importantly, our findings provide a preclinical platform for the development of other TGF-β-targeted therapies for patients with COPD.
Author Correction: Super-achromatic monolithic microprobe for ultrahigh-resolution endoscopic optical coherence tomography at 800 nm
The original version of this Article contained an error in the third sentence of the ‘Animal studies’ section of the Methods, which incorrectly read ‘The sheep anesthesia was initiated with ketamine (25 mg kg −1 ) and then maintained by continuous intravascular (IV) infusion of propofol (800 mg kg −1  h −1 ) during imaging.’ The correct version states ‘800 µg kg −1  h −1 ’ in place of ‘800 mg kg −1  h −1 ’. This has been corrected in both the PDF and HTML versions of the article.
Emphysema — A Disease of Small Airways or Lung Parenchyma?
In 1984, the Division of Lung Diseases at the National Heart, Lung, and Blood Institute funded a workshop that led to what is still the basis for most definitions of emphysema: “a condition of the lung characterized by abnormal, permanent enlargement of airspaces distal to the terminal bronchiole, accompanied by the destruction of their walls, and without obvious fibrosis.” 1 In this issue of the Journal, McDonough et al. 2 report findings that seem to challenge this definition — namely, the extensive obliteration of terminal bronchioles in patients with chronic obstructive pulmonary disease (COPD) who have emphysema. Indeed, when most people hear . . .
A mouse model of chronic idiopathic pulmonary fibrosis
Chronic idiopathic pulmonary fibrosis (IPF) is a progressive, fatal, and untreatable disease with unclear etiology. There are few models of this chronic pathology, and although delivery of bleomycin to induce acute lung injury is the most common animal model of pulmonary fibrosis, there is considerable uncertainty about whether this acute injury resolves in those animals that survive. In this report, we have systematically followed groups of mice for up to 6 months following a single insult of bleomycin. We assessed changes in lung function and pathology over this time course, with measurements of the diffusion capacity for carbon monoxide, lung mechanics, quantitative stereology, and collagen. Our results show that, while there is some repair over this extended time course, the injury in the lung never fully resolves. This persistent degree of fibrosis may have similarities to many features of human IPF. Thus, these chronic fibrotic changes in mouse lungs could be a useful model to evaluate potential therapeutic interventions to accelerate repair and possible treat this debilitating disease. e00249 Figure shows the durability of the bleomycin induced fibrosis over 6 month.
Loss of E-cadherin is causal to pathologic changes in chronic lung disease
Epithelial cells line the lung mucosal surface and are the first line of defense against toxic exposures to environmental insults, and their integrity is critical to lung health. An early finding in the lung epithelium of patients with chronic obstructive pulmonary disease (COPD) is the loss of a key component of the adherens junction protein called E-cadherin. The cause of this decrease is not known and could be due to luminal insults or structural changes in the small airways. Irrespective, it is unknown whether the loss of E-cadherin is a marker or a driver of disease. Here we report that loss of E-cadherin is causal to the development of chronic lung disease. Using cell-type-specific promoters, we find that knockout of E-cadherin in alveolar epithelial type II but not type 1 cells in adult mouse models results in airspace enlargement. Furthermore, the knockout of E-cadherin in airway ciliated cells, but not club cells, increase airway hyperreactivity. We demonstrate that strategies to upregulate E-cadherin rescue monolayer integrity and serve as a potential therapeutic target. Specific loss of the adherens junction protein E-cadherin in alveolar epithelial and airway ciliated cells causes chronic lung disease.