Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
136 result(s) for "Mizuno, Seiji"
Sort by:
A novel missense variant in CUL3 shows altered binding ability to BTB-adaptor proteins leading to diverse phenotypes of CUL3-related disorders
CUL3 forms Cullin-Ring ubiquitin ligases (CRL) with Ring-box protein and BTB-adaptor proteins. A variety of BTB-adaptor proteins have been reported to interact with the N-terminus of CUL3, which makes it possible to recognize various substrates for degradation. Regarding the association of CUL3 with neurodevelopmental disorders, a recent study reported three patients with global developmental delay, who carried de novo variants in CUL3. Here, we describe a novel de novo CUL3 variant (c.158G > A, p.Ser53Asn) identified in a patient with global developmental delay, who presented some novel dysmorphic features, including macrocephaly, characteristic facial features, and cutis marmorata. Immunoprecipitation and immunoblot analyses identified significantly weaker binding ability to some BTB proteins in CUL3-S53N compared to wild-type. Interestingly, label-free quantification proteomics analysis of samples immunoprecipitated by CUL3-S53N showed a significantly decreased interaction with some BTB proteins, while almost equal interaction or significantly increased interaction was observed with other BTB proteins. The binding between CUL3 and BTB proteins is essential for CRL substrate recognition, and alteration of their interaction is thought to result in the quantitative alteration in substrate proteins. It is possible that the difference of dysmorphic features between the present case and previously reported cases is caused by the distinctive effect of each CUL3 variant on substrate proteins. The clinical information of the present case will expand the picture of CUL3-related global developmental disorders, and subsequent cell biological analysis of the novel mutation will provide insight into the underlying molecular mechanism of how CUL3 pathogenic variants cause neurological disorders.
Temple syndrome: comprehensive molecular and clinical findings in 32 Japanese patients
Purpose Temple syndrome (TS14) is a rare imprinting disorder caused by aberrations at the 14q32.2 imprinted region. Here, we report comprehensive molecular and clinical findings in 32 Japanese patients with TS14. Methods We performed molecular studies for TS14 in 356 patients with variable phenotypes, and clinical studies in all TS14 patients, including 13 previously reported. Results We identified 19 new patients with TS14, and the total of 32 patients was made up of 23 patients with maternal uniparental disomy (UPD(14)mat), six patients with epimutations, and three patients with microdeletions. Clinical studies revealed both Prader-Willi syndrome (PWS)-like marked hypotonia and Silver-Russell syndrome (SRS)-like phenotype in 50% of patients, PWS-like hypotonia alone in 20% of patients, SRS-like phenotype alone in 20% of patients, and nonsyndromic growth failure in the remaining 10% of patients in infancy, and gonadotropin-dependent precocious puberty in 76% of patients who were pubescent or older. Conclusion These results suggest that TS14 is not only a genetically diagnosed entity but also a clinically recognizable disorder. Genetic testing for TS14 should be considered in patients with growth failure plus both PWS-like hypotonia and SRS-like phenotypes in infancy, and/or precocious puberty, as well as a familial history of Kagami-Ogata syndrome due to maternal microdeletion at 14q32.2.
Target enrichment long-read sequencing with adaptive sampling can determine the structure of the small supernumerary marker chromosomes
Structural analysis of small supernumerary marker chromosomes (sSMCs) has revealed that many have complex structures. Structural analysis of sSMCs by whole genome sequencing using short-read sequencers is challenging however because most present with a low level of mosaicism and consist of a small region of the involved chromosome. In this present study, we applied adaptive sampling using nanopore long-read sequencing technology to enrich the target region and thereby attempted to determine the structure of two sSMCs with complex structural rearrangements previously revealed by cytogenetic microarray. In adaptive sampling, simple specification of the target region in the FASTA file enables to identify whether or not the sequencing DNA is included in the target, thus promoting efficient long-read sequencing. To evaluate the target enrichment efficiency, we performed conventional pair-end short-read sequencing in parallel. Sequencing with adaptive sampling achieved a target enrichment at about a 11.0- to 11.5-fold higher coverage rate than conventional pair-end sequencing. This enabled us to quickly identify all breakpoint junctions and determine the exact sSMC structure as a ring chromosome. In addition to the microhomology and microinsertion at the junctions, we identified inverted repeat structure in both sSMCs, suggesting the common generation mechanism involving replication impairment. Adaptive sampling is thus an easy and beneficial method of determining the structures of complex chromosomal rearrangements.
Establishment of in-hospital clinical network for patients with neurofibromatosis type 1 in Nagoya University Hospital
Neurofibromatosis type 1 (NF1) is a genetic multisystem disorder. Clinicians must be aware of the diverse clinical features of this disorder in order to provide optimal care for it. We have set up an NF1 in-hospital medical care network of specialists regardless of patient age, launching a multidisciplinary approach to the disease for the first time in Japan. From January 2014 to December 2020, 246 patients were enrolled in the NF1 patient list and medical records. Mean age was 26.0 years ranging from 3 months to 80 years. The number of patients was higher as age at first visit was lower. There were 107 males (41%) and 139 females. After 2011, the number of patients has increased since the year when the medical care network was started. Regarding orthopedic signs, scoliosis was present in 60 cases (26%), and bone abnormalities in the upper arm, forearm, and tibia in 8 cases (3.5%). Neurofibromas other than cutaneous neurofibromas were present in 90 cases (39%), and MPNST in 17 cases (7.4%). We launched a multidisciplinary NF1 clinic system for the first time in Japan. For patients with NF1, which is a hereditary and systemic disease associated with a high incidence of malignant tumors, it will be of great benefit when the number of such clinics in Japan and the rest of Asia is increased.
Mutations affecting components of the SWI/SNF complex cause Coffin-Siris syndrome
Naomichi Matsumoto and colleagues report mutations in the SWI/SNF chromatin remodeling complex in Coffin-Siris syndrome. Twenty affected individuals (87%) harbored mutations in one of six SWI/SNF subunit genes: SMARCB1 , SMARCA4 , SMARCA2 , SMARCE1 , ARID1A or ARID1B . By exome sequencing, we found de novo SMARCB1 mutations in two of five individuals with typical Coffin-Siris syndrome (CSS), a rare autosomal dominant anomaly syndrome. As SMARCB1 encodes a subunit of the SWItch/Sucrose NonFermenting (SWI/SNF) complex, we screened 15 other genes encoding subunits of this complex in 23 individuals with CSS. Twenty affected individuals (87%) each had a germline mutation in one of six SWI/SNF subunit genes, including SMARCB1 , SMARCA4 , SMARCA2 , SMARCE1 , ARID1A and ARID1B .
Comprehensive investigation of CASK mutations and other genetic etiologies in 41 patients with intellectual disability and microcephaly with pontine and cerebellar hypoplasia (MICPCH)
The CASK gene (Xp11.4) is highly expressed in the mammalian nervous system and plays several roles in neural development and synaptic function. Loss-of-function mutations of CASK are associated with intellectual disability and microcephaly with pontine and cerebellar hypoplasia (MICPCH), especially in females. Here, we present a comprehensive investigation of 41 MICPCH patients, analyzed by mutational search of CASK and screening of candidate genes using an SNP array, targeted resequencing and whole-exome sequencing (WES). In total, we identified causative or candidate genomic aberrations in 37 of the 41 cases (90.2%). CASK aberrations including a rare mosaic mutation in a male patient, were found in 32 cases, and a mutation in ITPR1, another known gene in which mutations are causative for MICPCH, was found in one case. We also found aberrations involving genes other than CASK, such as HDAC2, MARCKS, and possibly HS3ST5, which may be associated with MICPCH. Moreover, the targeted resequencing screening detected heterozygous variants in RELN in two cases, of uncertain pathogenicity, and WES analysis suggested that concurrent mutations of both DYNC1H1 and DCTN1 in one case could lead to MICPCH. Our results not only identified the etiology of MICPCH in nearly all the investigated patients but also suggest that MICPCH is a genetically heterogeneous condition, in which CASK inactivating mutations appear to account for the majority of cases.
Gait characteristics of children with Williams syndrome with impaired visuospatial recognition: a three-dimensional gait analysis study
Williams syndrome (WS) is a genetically based neurodevelopmental disorder characterized by intellectual disability and impaired visuospatial recognition. The aim of this study was to analyze the gait characteristics of WS children with impaired visuospatial recognition using a three-dimensional gait analysis (3DGA) to clarify the gait adaptation needed to compensate for it. 3DGA was performed in 8 WS children with impaired visuospatial recognition (mean age, 11.8 years) and 9 age-, sex-, height-, and weight-matched controls. Clinical data, fundamental motor tests, and gait variables while walking on a flat surface and walking up a mat were compared between the two groups, and the correlations between variables were analyzed in the WS children. WS children showed impairment of balance function without muscle weakness. In walking on a flat surface, the WS group showed reduced walking speed, short step length, increased variability of step length, increased knee flexion throughout the stance phase, increased horizontal pelvic range of motion (ROM), and a low Gait Deviation Index and a high Gait Profile Score, which are indices of gait quality. In walking up a mat, the WS group showed further reduced walking speed and decreased sagittal hip flexion and ankle dorsiflexion ROM in the swing phase. Impaired balance function was significantly correlated with increased variability of step length and decreased sagittal ankle dorsiflexion ROM in the swing phase. The detailed gait pattern of WS children with impaired visuospatial recognition was presented. These findings show that impaired visuospatial recognition and balance function contribute to gait adaptation.
Breakpoints in complex chromosomal rearrangements correspond to transposase-accessible regions of DNA from mature sperm
Constitutional complex chromosomal rearrangements (CCRs) are rare cytogenetic aberrations arising in the germline via an unknown mechanism. Here we analyzed the breakpoint junctions of microscopically three-way or more complex translocations using comprehensive genomic and epigenomic analyses. All of these translocation junctions showed submicroscopic genomic complexity reminiscent of chromothripsis. The breakpoints were clustered within small genomic domains with junctions showing microhomology or microinsertions. Notably, all of the de novo cases were of paternal origin. The breakpoint distributions corresponded specifically to the ATAC-seq (assay for transposase-accessible chromatin with sequencing) read data peak of mature sperm and not to other chromatin markers or tissues. We propose that DNA breaks in CCRs may develop in an accessible region of densely packaged chromatin during post-meiotic spermiogenesis.
Missense and truncated variants in ERF in individuals with a Noonan-like phenotype without craniosynostosis
ETS2 repressor factor ( ERF ) is a member of the ETS family of transcriptional repressors downstream of ERK . Although germline truncated variants in ERF have been identified in individuals with Noonan-like syndrome with or without craniosynostosis, the clinical spectrum of ERF variant-positive individuals and the functional characterization of ERF variants are currently not fully understood. In this study, we identified one missense variant (p.G53R) and two truncating variants in ERF using whole exome sequencing (WES) in three individuals and one truncating variant using Sanger sequencing in one of 81 individuals with suspected Noonan syndrome without any pathogenic variants by targeted analysis in the previous study. Four Individuals with pathogenic ERF variants were diagnosed with Noonan-like syndrome, where craniosynostosis was not evident. Our investigation revealed that wild-type ERF undergoes nuclear-cytoplasmic shift, whereas truncated mutant ERF are predominantly localized in the nucleus. Moreover, R183 * and G299Rfs variants lost their ability to repress the proliferation of osteoblast-like cells (MC3T3-E1). A luciferase assay examining the transcriptional activity of RUNX2 binding motifs indicated that the truncated variants were defective in their suppressive function. Further experimentation demonstrated that MC3T3-E1 cells expressing the p.G53R and three truncating variants induced ossification compared to the wild-type. These results suggest that loss-of-function mutations in ERF , which result in reduced ossification suppressor activity in MC3T3-E1 cells, can lead to craniofacial abnormalities in individuals with Noonan syndrome-like symptoms.
Clinical diversity and molecular mechanism of VPS35L-associated Ritscher-Schinzel syndrome
PurposeThe Retriever subunit VPS35L is the third responsible gene for Ritscher-Schinzel syndrome (RSS) after WASHC5 and CCDC22. To date, only one pair of siblings have been reported and their condition was significantly more severe than typical RSS. This study aimed to understand the clinical spectrum and underlying molecular mechanism in VPS35L-associated RSS.MethodsWe report three new patients with biallelic VPS35L variants. Biochemical and cellular analyses were performed to elucidate disease aetiology.Results.In addition to typical features of RSS, we confirmed hypercholesterolaemia, hypogammaglobulinaemia and intestinal lymphangiectasia as novel complications of VPS35L-associated RSS. The latter two complications as well as proteinuria have not been reported in patients with CCDC22 and WASHC5 variants. One patient showed a severe phenotype and the other two were milder. Cells established from patients with the milder phenotypes showed relatively higher VPS35L protein expression. Cellular analysis found VPS35L ablation decreased the cell surface level of lipoprotein receptor-related protein 1 and low-density lipoprotein receptor, resulting in reduced low-density lipoprotein cellular uptake.ConclusionVPS35L-associated RSS is a distinct clinical entity with diverse phenotype and severity, with a possible molecular mechanism of hypercholesterolaemia. These findings provide new insight into the essential and distinctive role of Retriever in human development.