Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
118 result(s) for "Modat, Marc"
Sort by:
Vaccine side-effects and SARS-CoV-2 infection after vaccination in users of the COVID Symptom Study app in the UK: a prospective observational study
The Pfizer-BioNTech (BNT162b2) and the Oxford-AstraZeneca (ChAdOx1 nCoV-19) COVID-19 vaccines have shown excellent safety and efficacy in phase 3 trials. We aimed to investigate the safety and effectiveness of these vaccines in a UK community setting. In this prospective observational study, we examined the proportion and probability of self-reported systemic and local side-effects within 8 days of vaccination in individuals using the COVID Symptom Study app who received one or two doses of the BNT162b2 vaccine or one dose of the ChAdOx1 nCoV-19 vaccine. We also compared infection rates in a subset of vaccinated individuals subsequently tested for SARS-CoV-2 with PCR or lateral flow tests with infection rates in unvaccinated controls. All analyses were adjusted by age (≤55 years vs >55 years), sex, health-care worker status (binary variable), obesity (BMI <30 kg/m2vs ≥30 kg/m2), and comorbidities (binary variable, with or without comorbidities). Between Dec 8, and March 10, 2021, 627 383 individuals reported being vaccinated with 655 590 doses: 282 103 received one dose of BNT162b2, of whom 28 207 received a second dose, and 345 280 received one dose of ChAdOx1 nCoV-19. Systemic side-effects were reported by 13·5% (38 155 of 282 103) of individuals after the first dose of BNT162b2, by 22·0% (6216 of 28 207) after the second dose of BNT162b2, and by 33·7% (116 473 of 345 280) after the first dose of ChAdOx1 nCoV-19. Local side-effects were reported by 71·9% (150 023 of 208 767) of individuals after the first dose of BNT162b2, by 68·5% (9025 of 13 179) after the second dose of BNT162b2, and by 58·7% (104 282 of 177 655) after the first dose of ChAdOx1 nCoV-19. Systemic side-effects were more common (1·6 times after the first dose of ChAdOx1 nCoV-19 and 2·9 times after the first dose of BNT162b2) among individuals with previous SARS-CoV-2 infection than among those without known past infection. Local effects were similarly higher in individuals previously infected than in those without known past infection (1·4 times after the first dose of ChAdOx1 nCoV-19 and 1·2 times after the first dose of BNT162b2). 3106 of 103 622 vaccinated individuals and 50 340 of 464 356 unvaccinated controls tested positive for SARS-CoV-2 infection. Significant reductions in infection risk were seen starting at 12 days after the first dose, reaching 60% (95% CI 49–68) for ChAdOx1 nCoV-19 and 69% (66–72) for BNT162b2 at 21–44 days and 72% (63–79) for BNT162b2 after 45–59 days. Systemic and local side-effects after BNT162b2 and ChAdOx1 nCoV-19 vaccination occur at frequencies lower than reported in phase 3 trials. Both vaccines decrease the risk of SARS-CoV-2 infection after 12 days. ZOE Global, National Institute for Health Research, Chronic Disease Research Foundation, National Institutes of Health, UK Medical Research Council, Wellcome Trust, UK Research and Innovation, American Gastroenterological Association.
Associations between blood pressure across adulthood and late-life brain structure and pathology in the neuroscience substudy of the 1946 British birth cohort (Insight 46): an epidemiological study
Midlife hypertension confers increased risk for cognitive impairment in late life. The sensitive period for risk exposure and extent that risk is mediated through amyloid or vascular-related mechanisms are poorly understood. We aimed to identify if, and when, blood pressure or change in blood pressure during adulthood were associated with late-life brain structure, pathology, and cognition. Participants were from Insight 46, a neuroscience substudy of the ongoing longitudinal Medical Research Council National Survey of Health and Development, a birth cohort that initially comprised 5362 individuals born throughout mainland Britain in one week in 1946. Participants aged 69–71 years received T1 and FLAIR volumetric MRI, florbetapir amyloid-PET imaging, and cognitive assessment at University College London (London, UK); all participants were dementia-free. Blood pressure measurements had been collected at ages 36, 43, 53, 60–64, and 69 years. We also calculated blood pressure change variables between ages. Primary outcome measures were white matter hyperintensity volume (WMHV) quantified from multimodal MRI using an automated method, amyloid-β positivity or negativity using a standardised uptake value ratio approach, whole-brain and hippocampal volumes quantified from 3D-T1 MRI, and a composite cognitive score—the Preclinical Alzheimer Cognitive Composite (PACC). We investigated associations between blood pressure and blood pressure changes at and between 36, 43, 53, 60–64, and 69 years of age with WMHV using generalised linear models with a gamma distribution and log link function, amyloid-β status using logistic regression, whole-brain volume and hippocampal volumes using linear regression, and PACC score using linear regression, with adjustment for potential confounders. Between May 28, 2015, and Jan 10, 2018, 502 individuals were assessed as part of Insight 46. 465 participants (238 [51%] men; mean age 70·7 years [SD 0·7]; 83 [18%] amyloid-β-positive) were included in imaging analyses. Higher systolic blood pressure (SBP) and diastolic blood pressure (DBP) at age 53 years and greater increases in SBP and DBP between 43 and 53 years were positively associated with WMHV at 69–71 years of age (increase in mean WMHV per 10 mm Hg greater SBP 7%, 95% CI 1–14, p=0·024; increase in mean WMHV per 10 mm Hg greater DBP 15%, 4–27, p=0·0057; increase in mean WMHV per one SD change in SBP 15%, 3–29, p=0·012; increase in mean WMHV per 1 SD change in DBP 15%, 3–30, p=0·017). Higher DBP at 43 years of age was associated with smaller whole-brain volume at 69–71 years of age (−6·9 mL per 10 mm Hg greater DBP, −11·9 to −1·9, p=0·0068), as were greater increases in DBP between 36 and 43 years of age (−6·5 mL per 1 SD change, −11·1 to −1·9, p=0·0054). Greater increases in SBP between 36 and 43 years of age were associated with smaller hippocampal volumes at 69–71 years of age (−0·03 mL per 1 SD change, −0·06 to −0·001, p=0·043). Neither absolute blood pressure nor change in blood pressure predicted amyloid-β status or PACC score at 69–71 years of age. High and increasing blood pressure from early adulthood into midlife seems to be associated with increased WMHV and smaller brain volumes at 69–71 years of age. We found no evidence that blood pressure affected cognition or cerebral amyloid-β load at this age. Blood pressure monitoring and interventions might need to start around 40 years of age to maximise late-life brain health. Alzheimer's Research UK, Medical Research Council, Dementias Platform UK, Wellcome Trust, Brain Research UK, Wolfson Foundation, Weston Brain Institute, Avid Radiopharmaceuticals.
The importance of appropriate partial volume correction for PET quantification in Alzheimer’s disease
Purpose Alzheimer’s disease (AD) is the most common form of dementia. Clinically, it is characterized by progressive cognitive and functional impairment with structural hallmarks of cortical atrophy and ventricular expansion. Amyloid plaque aggregation is also known to occur in AD subjects. In-vivo imaging of amyloid plaques is now possible with positron emission tomography (PET) radioligands. PET imaging suffers from a degrading phenomenon known as the partial volume effect (PVE). The quantitative accuracy of PET images is reduced by PVEs primarily due to the limited spatial resolution of the scanner. The degree of PVE is influenced by structure size, with smaller structures tending to suffer from more severe PVEs such as atrophied grey matter regions. The aims of this paper were to investigate the effect of partial volume correction (PVC) on the quantification of amyloid PET and to highlight the importance of selecting an appropriate PVC technique. Methods An improved PVC technique, region-based voxel-wise (RBV) correction, was compared against existing Van-Cittert (VC) and Müller-Gärtner (MG) methods using amyloid PET imaging data. Digital phantom data were produced using segmented MRI scans from a control subject and an AD subject. Typical tracer distributions were generated for each of the phantom anatomies. Also examined were 70 clinical PET scans acquired using [ 18 F]flutemetamol. Volume of interest (VOI) analysis was performed for corrected and uncorrected images. Results PVC was shown to improve the quantitative accuracy of regional analysis performed on amyloid PET images. Of the corrections applied, VC deconvolution demonstrated the worst recovery of grey matter values. MG PVC was shown to induce biases in some grey matter regions due to grey matter variability. In addition, white matter variability was shown to influence the accuracy of MG PVC in cortical grey matter and also cerebellar grey matter, a typical reference region for amyloid PET normalization in sporadic AD. RBV was shown to be more accurate than MG in terms of grey matter and white matter uptake. An increase in within-group variability after PVC was observed and is believed to be a genuine, more accurate representation of the data rather than a correction-induced error. The standardized uptake value ratio (SUVR) threshold for classifying subjects as either amyloid-positive or amyloid-negative was found to be 1.64 in the uncorrected dataset, rising to 2.25 after PVC. Conclusion Care should be taken when applying PVC to amyloid PET images. Assumptions made in existing PVC strategies can induce biases that could lead to erroneous inferences about uptake in certain regions. The proposed RBV PVC technique accounts for within-compartment variability, with the potential to reduce errors of this kind.
Volumetric MRI is a promising outcome measure of muscle reinnervation
The development of outcome measures that can track the recovery of reinnervated muscle would benefit the clinical investigation of new therapies which hope to enhance peripheral nerve repair. The primary objective of this study was to assess the validity of volumetric Magnetic Resonance Imaging (MRI) as an outcome measure of muscle reinnervation by testing its reproducibility, responsiveness and relationship with clinical indices of muscular function. Over a 3-year period 25 patients who underwent nerve transfer to reinnervate elbow flexor muscles were assessed using intramuscular electromyography (EMG) and MRI (median post-operative assessment time of 258 days, ranging from 86 days pre-operatively to 1698 days post- operatively). Muscle power (Medical Research Council (MRC) grade) and Stanmore Percentage of Normal Elbow Assessment (SPONEA) assessment was also recorded for all patients. Sub-analysis of peak volitional force (PVF), muscular fatigue and co-contraction was performed in those patients with MRC > 3. The responsiveness of each parameter was compared using Pearson or Spearman correlation. A Hierarchical Gaussian Process (HGP) was implemented to determine the ability of volumetric MRI measurements to predict the recovery of muscular function. Reinnervated muscle volume per unit Body Mass Index (BMI) demonstrated good responsiveness (R 2  = 0.73, p  < 0.001). Using the temporal and muscle volume per unit BMI data, a HGP model was able to predict MRC grade and SPONEA with a mean absolute error (MAE) of 0.73 and 1.7 respectively. Muscle volume per unit BMI demonstrated moderate to good positive correlations with patient reported impairments of reinnervated muscle; co- contraction (R 2  = 0.63, p  = 0.02) and muscle fatigue (R 2  = 0.64, p  = 0.04). In summary, volumetric MRI analysis of reinnervated muscle is highly reproducible, responsive to post-operative time and demonstrates correlation with clinical indices of muscle function. This encourages the view that volumetric MRI is a promising outcome measure for muscle reinnervation which will drive advancements in motor recovery therapy.
Symptoms and syndromes associated with SARS-CoV-2 infection and severity in pregnant women from two community cohorts
We tested whether pregnant and non-pregnant women differ in COVID-19 symptom profile and severity, and we extended previous investigations on hospitalized pregnant women to those who did not require hospitalization. Two female community-based cohorts (18–44 years) provided longitudinal (smartphone application, N = 1,170,315, n = 79 pregnant tested positive) and cross-sectional (web-based survey, N = 1,344,966, n = 134 pregnant tested positive) data, prospectively collected through self-participatory citizen surveillance in UK, Sweden and USA. Pregnant and non-pregnant were compared for frequencies of events, including SARS-CoV-2 testing, symptoms and hospitalization rates. Multivariable regression was used to investigate symptoms severity and comorbidity effects. Pregnant and non-pregnant women positive for SARS-CoV-2 infection were not different in syndromic severity, except for gastrointestinal symptoms. Pregnant were more likely to have received testing, despite reporting fewer symptoms. Pre-existing lung disease was most closely associated with syndromic severity in pregnant hospitalized. Heart and kidney diseases and diabetes increased risk. The most frequent symptoms among non-hospitalized women were anosmia [63% pregnant, 92% non-pregnant] and headache [72%, 62%]. Cardiopulmonary symptoms, including persistent cough [80%] and chest pain [73%], were more frequent among pregnant who were hospitalized. Consistent with observations in non-pregnant populations, lung disease and diabetes were associated with increased risk of more severe SARS-CoV-2 infection during pregnancy.
aMAP is a validated pipeline for registration and segmentation of high-resolution mouse brain data
The validation of automated image registration and segmentation is crucial for accurate and reliable mapping of brain connectivity and function in three-dimensional (3D) data sets. While validation standards are necessarily high and routinely met in the clinical arena, they have to date been lacking for high-resolution microscopy data sets obtained from the rodent brain. Here we present a tool for optimized automated mouse atlas propagation (aMAP) based on clinical registration software (NiftyReg) for anatomical segmentation of high-resolution 3D fluorescence images of the adult mouse brain. We empirically evaluate aMAP as a method for registration and subsequent segmentation by validating it against the performance of expert human raters. This study therefore establishes a benchmark standard for mapping the molecular function and cellular connectivity of the rodent brain. Anatomical segmentation of high-resolution 3D microscopy datasets is necessary to map large samples at cellular resolution. Here the authors present a pipeline for automated mouse atlas propagation (aMAP) to segment fluorescence images of the adult mouse brain and validate it against human segmentations.
Robust parametric modeling of Alzheimer’s disease progression
•A parametric disease progression modeling method is proposed based on alternating Mestimation which is robust to outliers.•A novel generalized logistic function, called modified Stannard, is proposed which better fits the AD biomarker trajectories.•An end-to-end approach is introduced that performs biomarker trajectory modeling and clinical status classification.•The proposed method is applied to model the progression of Alzheimer’s disease using volumetric MRI and PET biomarkers, CSF measures, as well as cognitive tests.•The generalizability of the proposed method is evaluated based on the prediction performance within and across cohorts. Quantitative characterization of disease progression using longitudinal data can provide long-term predictions for the pathological stages of individuals. This work studies the robust modeling of Alzheimer’s disease progression using parametric methods. The proposed method linearly maps the individual’s age to a disease progression score (DPS) and jointly fits constrained generalized logistic functions to the longitudinal dynamics of biomarkers as functions of the DPS using M-estimation. Robustness of the estimates is quantified using bootstrapping via Monte Carlo resampling, and the estimated inflection points of the fitted functions are used to temporally order the modeled biomarkers in the disease course. Kernel density estimation is applied to the obtained DPSs for clinical status classification using a Bayesian classifier. Different M-estimators and logistic functions, including a novel type proposed in this study, called modified Stannard, are evaluated on the data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) for robust modeling of volumetric magnetic resonance imaging (MRI) and positron emission tomography (PET) biomarkers, cerebrospinal fluid (CSF) measurements, as well as cognitive tests. The results show that the modified Stannard function fitted using the logistic loss achieves the best modeling performance with an average normalized mean absolute error (NMAE) of 0.991 across all biomarkers and bootstraps. Applied to the ADNI test set, this model achieves a multiclass area under the ROC curve (AUC) of 0.934 in clinical status classification. The obtained results for the proposed model outperform almost all state-of-the-art results in predicting biomarker values and classifying clinical status. Finally, the experiments show that the proposed model, trained using abundant ADNI data, generalizes well to data from the National Alzheimer’s Coordinating Center (NACC) with an average NMAE of 1.182 and a multiclass AUC of 0.929.
Convolutional neural network using magnetic resonance brain imaging to predict outcome from tuberculosis meningitis
Tuberculous meningitis (TBM) leads to high mortality, especially amongst individuals with HIV. Predicting the incidence of disease-related complications is challenging, for which purpose the value of brain magnetic resonance imaging (MRI) has not been well investigated. We used a convolutional neural network (CNN) to explore the complementary contribution of brain MRI to the conventional prognostic determinants. We pooled data from two randomised control trials of HIV-positive and HIV-negative adults with clinical TBM in Vietnam to predict the occurrence of death or new neurological complications in the first two months after the subject's first MRI session. We developed and compared three models: a logistic regression with clinical, demographic and laboratory data as reference, a CNN that utilised only T1-weighted MRI volumes, and a model that fused all available information. All models were fine-tuned using two repetitions of 5-fold cross-validation. The final evaluation was based on a random 70/30 training/test split, stratified by the outcome and HIV status. Based on the selected model, we explored the interpretability maps derived from the models. 215 patients were included, with an event prevalence of 22.3%. On the test set our non-imaging model had higher AUC (71.2% [Formula: see text] 1.1%) than the imaging-only model (67.3% [Formula: see text] 2.6%). The fused model was superior to both, with an average AUC = 77.3% [Formula: see text] 4.0% in the test set. The non-imaging variables were more informative in the HIV-positive group, while the imaging features were more predictive in the HIV-negative group. All three models performed better in the HIV-negative cohort. The interpretability maps show the model's focus on the lateral fissures, the corpus callosum, the midbrain, and peri-ventricular tissues. Imaging information can provide added value to predict unwanted outcomes of TBM. However, to confirm this finding, a larger dataset is needed.
Distinct profiles of brain atrophy in frontotemporal lobar degeneration caused by progranulin and tau mutations
Neural network breakdown is a key issue in neurodegenerative disease, but the mechanisms are poorly understood. Here we investigated patterns of brain atrophy produced by defined molecular lesions in the two common forms of genetically mediated frontotemporal lobar degeneration (FTLD). Nine patients with progranulin (GRN) mutations and eleven patients with microtubule-associated protein tau (MAPT) mutations had T1 MR brain imaging. Brain volumetry and grey and white matter voxel-based morphometry (VBM) were used to assess patterns of cross-sectional atrophy in the two groups. In a subset of patients with longitudinal MRI rates of whole-brain atrophy were derived using the brain-boundary-shift integral and a VBM-like analysis of voxel-wise longitudinal volume change was performed. The GRN mutation group showed asymmetrical atrophy whereas the MAPT group showed symmetrical atrophy. Brain volumes were smaller in the GRN group with a faster rate of whole-brain atrophy. VBM delineated a common anterior cingulate–prefrontal–insular pattern of atrophy in both disease groups. Additional disease-specific profiles of grey and white matter loss were identified on both cross-sectional and longitudinal imaging: GRN mutations were associated with asymmetrical inferior frontal, temporal and inferior parietal lobe grey matter atrophy and involvement of long intrahemispheric association white matter tracts, whereas MAPT mutations were associated with symmetrical anteromedial temporal lobe and orbitofrontal grey matter atrophy and fornix involvement. The findings suggest that the effects of GRN and MAPT mutations are expressed in partly overlapping but distinct anatomical networks that link specific molecular dysfunction with clinical phenotype.