Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
21 result(s) for "Modenini, Dario"
Sort by:
Large Constellations of Small Satellites: A Survey of Near Future Challenges and Missions
Constellations of satellites are being proposed in large numbers; most of them are expected to be in orbit within the next decade. They will provide communication to unserved and underserved communities, enable global monitoring of Earth and enhance space observation. Mostly enabled by technology miniaturization, satellite constellations require a coordinated effort to face the technological limits in spacecraft operations and space traffic. At the moment in fact, no cost-effective infrastructure is available to withstand coordinated flight of large fleets of satellites. In order for large constellations to be sustainable, there is the need to efficiently integrate and use them in the current space framework. This review paper provides an overview of the available experience in constellation operations and statistical trends about upcoming constellations at the moment of writing. It highlights also the tools most often proposed in the analyzed works to overcome constellation management issues, such as applications of machine learning/artificial intelligence and resource/infrastructure sharing. As such, it is intended to be a useful resource for both identifying emerging trends in satellite constellations, and enabling technologies still requiring substantial development efforts.
Resonance locking in giant planets indicated by the rapid orbital expansion of Titan
Saturn is orbited by dozens of moons, and the intricate dynamics of this complex system provide clues about its formation and evolution. Tidal friction within Saturn causes its moons to migrate outwards, driving them into orbital resonances that pump their eccentricities or inclinations, which in turn leads to tidal heating of the moons. However, in giant planets, the dissipative processes that determine the tidal migration timescale remain poorly understood. Standard theories suggest an orbital expansion rate inversely proportional to the power 11/2 in distance 1 , implying negligible migration for outer moons such as Saturn’s largest moon, Titan. Here, we use two independent measurements obtained with the Cassini spacecraft to measure Titan’s orbital expansion rate. We find that Titan rapidly migrates away from Saturn on a timescale of roughly ten billion years, corresponding to a tidal quality factor of Saturn of Q ≃ 100, which is more than a hundred times smaller than most expectations. Our results for Titan and five other moons agree with the predictions of a resonance-locking tidal theory 2 , sustained by excitation of inertial waves inside the planet. The associated tidal expansion is only weakly sensitive to orbital distance, motivating a revision of the evolutionary history of Saturn’s moon system. In particular, it suggests that Titan formed much closer to Saturn and has migrated outward to its current position. Titan is migrating away from Saturn on a much shorter timescale than expected, lending support to the resonance-locking tidal theory. This result motivates a revision of the evolutionary history of Saturn’s moon system and may be relevant to other giant planets.
Attitude Sensor from Ellipsoid Observations: A Numerical and Experimental Validation
The preliminary design and validation of a novel, high accuracy horizon-sensor for small satellites is presented, which is based on the theory of attitude determination from ellipsoid observations. The concept consists of a multi-head infrared sensor capturing images of the Earth limb. By fitting an ellipse to the imaged limb arcs, and exploiting some analytical results available from projective geometry, a closed form solution for computing the attitude matrix is provided. The algorithm is developed in a dimensionless framework, requiring the knowledge of the shape of the imaged target, but not of its size. As a result, the solution is less sensitive to the limb shift caused by the atmospheric own radiance. To evaluate the performance of the proposed method, a numerical simulator is developed, which generates images captured in low Earth orbit, including also the presence of the atmosphere. In addition, experimental validation is provided due to a dedicated testbed, making use of a miniature infrared camera. Results show that our sensor concept returns rms errors of few hundredths of a degree or less in determining the local nadir direction.
A Dynamic Testbed for Nanosatellites Attitude Verification
To enable a reliable verification of attitude determination and control systems for nanosatellites, the environment of low Earth orbits with almost disturbance-free rotational dynamics must be simulated. This work describes the design solutions adopted for developing a dynamic nanosatellite attitude simulator testbed at the University of Bologna. The facility integrates several subsystems, including: (i) an air-bearing three degree of freedom platform, with automatic balancing system, (ii) a Helmholtz cage for geomagnetic field simulation, (iii) a Sun simulator, and (iv) a metrology vision system for ground-truth attitude generation. Apart from the commercial off-the-shelf Helmholtz cage, the other subsystems required substantial development efforts. The main purpose of this manuscript is to offer some cost-effective solutions for their in-house development, and to show through experimental verification that adequate performances can be achieved. The proposed approach may thus be preferred to the procurement of turn-key solutions, when required by budget constraints. The main outcome of the commissioning phase of the facility are: a residual disturbance torque affecting the air bearing platform of less than 5 × 10−5 Nm, an attitude determination rms accuracy of the vision system of 10 arcmin, and divergence of the Sun simulator light beam of less than 0.5° in a 35 cm diameter area.
Automatic Balancing for Satellite Simulators with Mixed Mechanical and Magnetic Actuation
Dynamic spacecraft simulators are becoming a widespread tool to enable effective on-ground verification of the attitude determination and control subsystem (ADCS). In such facilities, the on-orbit rotational dynamics shall be simulated, thereby requiring minimization of the external torques acting on the satellite mock-up. Gravity torque is often the largest among the disturbances, and an automatic procedure for balancing is usually foreseen in such facilities as it is significantly faster and more accurate than manual methods. In this note, we present an automatic balancing technique which combines mechanical and magnetic actuation by the joint use of sliding masses and magnetorquers. A feedback control is employed for in-plane balancing in which the proportional and integral actions are provided by moving the masses, while the derivative action is provided by the magnetorquers. Compared to an earlier implementation by the authors relying on shifting masses only, the novel approach is shown to reduce the in-plane unbalance by an additional 45% on average.
Verification Approaches for Nano- and Micro-Satellites
Contributions Twelve high-quality papers were submitted to this Special Issue, covering several topics ranging from surveys of past experiences, novel approaches towards reliability analysis and Assembly, Integration, and Verification (AIV) assessment, testing facilities, to in-flight experience and on-orbit anomaly investigation. Piedra, Torres, and Ledesma [11] explore the viability, from a thermal point of view, of a composite material with ZnO nanoparticles to be employed in lieu of aluminum for the primary structure of a CubeSat, by performing finite element thermal analysis. [...]valuable in-flight experiences are reported in works by Kim, Nam, and Jung [15] and Stesina and Corpino [16], demonstrating the importance of ground simulation facilities aimed at subsystems performance verification and investigation of in-orbit anomalies, respectively. 3. [...]an approach may help in identifying system-level design flaws at a point when they can be recovered with minimal impact on the overall project schedule, which is of paramount importance for those programs leveraging on rapid deployment times, as typical for nano- and micro-satellite missions.
Experimental Verification of a Simple Method for Accurate Center of Gravity Determination of Small Satellite Platforms
We propose a simple and relatively inexpensive method for determining the center of gravity (CoG) of a small spacecraft. This method, which can be ascribed to the class of suspension techniques, is based on dual-axis inclinometer readings. By performing two consecutive suspensions from two different points, the CoG is determined, ideally, as the intersection between two lines which are uniquely defined by the respective rotations. We performed an experimental campaign to verify the method and assess its accuracy. Thanks to a quantitative error budget, we obtained an error distribution with simulations, which we verified through experimental tests. The retrieved experimental error distribution agrees well with the results predicted through simulations, which in turn lead to a CoG error norm smaller than 2 mm with 95% confidence level.
Comparison of Feedback Three-Axis Magnetic Attitude Control Strategies
In this article, five feedback magnetic attitude control algorithms are compared in terms of stabilization accuracy and implementation problems. The control strategies are classic Lyapunov control with scalar gain; the same control strategy with matrix gain and a specific gain-tuning procedure; sliding control with a variable surface; a linear quadratic regulator constructed for a special time-invariant system of a higher degree than the initial time-varying system; and a special controllable trajectory developed using particle swarm optimization. A new sliding surface construction method is proposed in this paper. Surface parameters were changed in every control iteration to ensure that the required control torque component along the geomagnetic induction vector was small. The advantages and drawbacks of the considered methods and their applicability for different target attitudes are discussed.
Design and Test of a Calibration System for Avalanche Photodiodes Used in X-Ray Compton Polarimeters for Space
The development and calibration of a measurement system designed for assessing the performance of the avalanche photodiodes (APDs) used in the Compton scattering polarimeter of the CUSP project is discussed in this work. The designed system is able to characterize the APD gain GAPD and energy resolution across a wide range of temperatures T (from −20 °C to +60 °C) and bias voltages Vbias (from 260 V to 410 V). The primary goal was to experimentally determine the GAPD dependence on the T and Vbias in order to establish a strategy for stabilizing GAPD by compensating for T fluctuations, acting on Vbias. The results demonstrate the system capability to accurately characterize APD behavior and develop feedback mechanisms to ensure its stable operation. This work provides a robust framework for calibrating APDs for space environments. It is essential for the successful implementation of spaceborne polarimeters such as the Compton scattering polarimeter foreseen aboard the CUbeSat Solar Polarimeter (CUSP) mission under development to perform solar flare X-ray polarimetry.