Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
68 result(s) for "Modinos, Gemma"
Sort by:
Activation of Anterior Insula during Self-Reflection
Functional neuroimaging studies have suggested activation of midline frontoparietal brain regions to be at the core of self-related processes. However, although some studies reported involvement of the insula, little attention has been paid to this region as forming part of the \"self\"-network. Using functional magnetic resonance imaging (fMRI), we aimed at replicating and extending previous studies by scanning subjects whilst reflecting upon their own personal qualities as compared to those of an acquaintance. A third condition with statements about general knowledge was used to control for attention, semantic processing and decision making processes. The results showed a significant effect of task in brain activity, consistent with previous findings, by which both person conditions recruited a common set of medial prefrontal and posterior regions, yet significant differences between self and other were found in the medial prefrontal cortex (MPFC) and the anterior cingulate cortex (ACC). Notably, significant neural activation in the left anterior insula was observed as uniquely associated with self-reflection. The results provide further evidence for the specific recruitment of anterior MPFC and ACC regions for self-related processing, and highlight a role for the insula in self-reflection. As the insula is closely connected with ascending internal body signals, this may indicate that the accumulation of changes in affective states that might be implied in self-processing may contribute to our sense of self.
Hippocampal circuit dysfunction in psychosis
Despite strong evidence of the neurodevelopmental origins of psychosis, current pharmacological treatment is not usually initiated until after a clinical diagnosis is made, and is focussed on antagonising striatal dopamine receptors. These drugs are only partially effective, have serious side effects, fail to alleviate the negative and cognitive symptoms of the disorder, and are not useful as a preventive treatment. In recent years, attention has turned to upstream brain regions that regulate striatal dopamine function, such as the hippocampus. This review draws together these recent data to discuss why the hippocampus may be especially vulnerable in the pathophysiology of psychosis. First, we describe the neurodevelopmental trajectory of the hippocampus and its susceptibility to dysfunction, exploring this region’s proneness to structural and functional imbalances, metabolic pressures, and oxidative stress. We then examine mechanisms of hippocampal dysfunction in psychosis and in individuals at high-risk for psychosis and discuss how and when hippocampal abnormalities may be targeted in these groups. We conclude with future directions for prospective studies to unlock the discovery of novel therapeutic strategies targeting hippocampal circuit imbalances to prevent or delay the onset of psychosis.
Corticolimbic circuitry as a druggable target in schizophrenia spectrum disorders: a narrative review
Schizophrenia spectrum disorders (SSD) involve disturbances in the integration of perception, emotion and cognition. The corticolimbic system is an interacting set of cortical and subcortical brain regions critically involved in this process. Understanding how neural circuitry and molecular mechanisms within this corticolimbic system may contribute to the development of not only positive symptoms but also negative and cognitive deficits in SSD has been a recent focus of intense research, as the latter are not adequately treated by current antipsychotic medications and are more strongly associated with poorer functioning and long-term outcomes. This review synthesises recent developments examining corticolimbic dysfunction in the pathophysiology of SSD, with a focus on neuroimaging advances and related novel methodologies that enable the integration of data across different scales. We then integrate how these findings may inform the identification of novel therapeutic and preventive targets for SSD symptomatology. A range of pharmacological interventions have shown initial promise in correcting corticolimbic dysfunction and improving negative, cognitive and treatment-resistant symptoms. We discuss current challenges and opportunities for improving the still limited translation of these research findings into clinical practice. We argue how our knowledge of the role of corticolimbic dysfunction can be improved by combining multiple research modalities to examine hypotheses across different spatial and temporal scales, combining neuroimaging with experimental interventions and utilising large-scale consortia to advance biomarker identification. Translation of these findings into clinical practice will be aided by consideration of optimal intervention timings, biomarker-led patient stratification, and the development of more selective medications.
Glutamatergic and dopaminergic function and the relationship to outcome in people at clinical high risk of psychosis: a multi-modal PET-magnetic resonance brain imaging study
Preclinical models of psychosis propose that hippocampal glutamatergic neuron hyperactivity drives increased striatal dopaminergic activity, which underlies the development of psychotic symptoms. The aim of this study was to examine the relationship between hippocampal glutamate and subcortical dopaminergic function in people at clinical high risk for psychosis, and to assess the association with the development of psychotic symptoms. 1H-MRS was used to measure hippocampal glutamate concentrations, and 18F-DOPA PET was used to measure dopamine synthesis capacity in 70 subjects (51 people at clinical high risk for psychosis and 19 healthy controls). Clinical assessments were undertaken at baseline and follow-up (median 15 months). Striatal dopamine synthesis capacity predicted the worsening of psychotic symptoms at follow-up (r = 0.35; p < 0.05), but not transition to a psychotic disorder (p = 0.22), and was not significantly related to hippocampal glutamate concentration (p = 0.13). There were no differences in either glutamate (p = 0.5) or dopamine (p = 0.5) measures in the total patient group relative to controls. Striatal dopamine synthesis capacity at presentation predicts the subsequent worsening of sub-clinical total and psychotic symptoms, consistent with a role for dopamine in the development of psychotic symptoms, but is not strongly linked to hippocampal glutamate concentrations.
Oxytocin modulates hippocampal perfusion in people at clinical high risk for psychosis
Preclinical and human studies suggest that hippocampal dysfunction is a key factor in the onset of psychosis. People at Clinical High Risk for psychosis (CHR-P) present with a clinical syndrome that can include social withdrawal and have a 20–35% risk of developing psychosis in the next 2 years. Recent research shows that resting hippocampal blood flow is altered in CHR-P individuals and predicts adverse clinical outcomes, such as non-remission/transition to frank psychosis. Previous work in healthy males indicates that a single dose of intranasal oxytocin has positive effects on social function and marked effects on resting hippocampal blood flow. The present study examined the effects of intranasal oxytocin on hippocampal blood flow in CHR-P individuals. In a double-blind, placebo-controlled, crossover design, 30 CHR-P males were studied using pseudo-continuous Arterial Spin Labelling on 2 occasions, once after 40IU intranasal oxytocin and once after placebo. The effects of oxytocin on left hippocampal blood flow were examined in a region-of-interest analysis of data acquired at 22–28 and at 30–36 minutes post-intranasal administration. Relative to placebo, administration of oxytocin was associated with increased hippocampal blood flow at both time points (p = .0056; p = .034), although the effect at the second did not survive adjustment for the effect of global blood flow. These data indicate that oxytocin can modulate hippocampal function in CHR-P individuals and therefore merits further investigation as a candidate novel treatment for this group.
Interactions between hippocampal activity and striatal dopamine in people at clinical high risk for psychosis: relationship to adverse outcomes
Preclinical models propose that increased hippocampal activity drives subcortical dopaminergic dysfunction and leads to psychosis-like symptoms and behaviors. Here, we used multimodal neuroimaging to examine the relationship between hippocampal regional cerebral blood flow (rCBF) and striatal dopamine synthesis capacity in people at clinical high risk (CHR) for psychosis and investigated its association with subsequent clinical and functional outcomes. Ninety-five participants (67 CHR and 28 healthy controls) underwent arterial spin labeling MRI and 18F-DOPA PET imaging at baseline. CHR participants were followed up for a median of 15 months to determine functional outcomes with the global assessment of function (GAF) scale and clinical outcomes using the comprehensive assessment of at-risk mental states (CAARMS). CHR participants with poor functional outcomes (follow-up GAF < 65, n = 25) showed higher rCBF in the right hippocampus compared to CHRs with good functional outcomes (GAF ≥ 65, n = 25) (pfwe = 0.026). The relationship between rCBF in this right hippocampal region and striatal dopamine synthesis capacity was also significantly different between groups (pfwe = 0.035); the association was negative in CHR with poor outcomes (pfwe = 0.012), but non-significant in CHR with good outcomes. Furthermore, the correlation between right hippocampal rCBF and striatal dopamine function predicted a longitudinal increase in the severity of positive psychotic symptoms within the total CHR group (p = 0.041). There were no differences in rCBF, dopamine, or their associations in the total CHR group relative to controls. These findings indicate that altered interactions between the hippocampus and the subcortical dopamine system are implicated in the pathophysiology of adverse outcomes in the CHR state.
GABAA and NMDA receptor density alterations and their behavioral correlates in the gestational methylazoxymethanol acetate model for schizophrenia
Hippocampal hyperactivity driven by GABAergic interneuron deficits and NMDA receptor hypofunction is associated with the hyperdopaminergic state often observed in schizophrenia. Furthermore, previous research in the methylazoxymethanol acetate (MAM) rat model has demonstrated that repeated peripubertal diazepam administration can prevent the emergence of adult hippocampal hyperactivity, dopamine-system hyperactivity, and associated psychosis-relevant behaviors. Here, we sought to characterize hippocampal GABAA and NMDA receptors in MAM-treated rats and to elucidate the receptor mechanisms underlying the promising effects of peripubertal diazepam exposure. Quantitative receptor autoradiography was used to measure receptor density in the dorsal hippocampus CA1, ventral hippocampus CA1, and ventral subiculum. Specifically, [3H]-Ro15-4513 was used to quantify the density of α5GABAA receptors (α5GABAAR), [3H]-flumazenil to quantify α1-3;5GABAAR, and [3H]-MK801 to quantify NMDA receptors. MAM rats exhibited anxiety and schizophrenia-relevant behaviors as measured by elevated plus maze and amphetamine-induced hyperlocomotion (AIH), although diazepam only partially rescued these behaviors. α5GABAAR density was reduced in MAM-treated rats in all hippocampal sub-regions, and negatively correlated with AIH. Ventral hippocampus CA1 α5GABAAR density was positively correlated with anxiety-like behavior. Dorsal hippocampus CA1 NMDA receptor density was increased in MAM-treated rats, and positively correlated with AIH. [3H]-flumazenil revealed no significant effects. Finally, we found no significant effect of diazepam treatment on receptor densities, potentially related to the only partial rescue of schizophrenia-relevant phenotypes. Overall, our findings provide first evidence of α5GABAAR and NMDA receptor abnormalities in the MAM model, suggesting that more selective pharmacological agents may become a novel therapeutic mechanism in schizophrenia.
Cortical and subcortical neuroanatomical signatures of schizotypy in 3004 individuals assessed in a worldwide ENIGMA study
Neuroanatomical abnormalities have been reported along a continuum from at-risk stages, including high schizotypy, to early and chronic psychosis. However, a comprehensive neuroanatomical mapping of schizotypy remains to be established. The authors conducted the first large-scale meta-analyses of cortical and subcortical morphometric patterns of schizotypy in healthy individuals, and compared these patterns with neuroanatomical abnormalities observed in major psychiatric disorders. The sample comprised 3004 unmedicated healthy individuals (12–68 years, 46.5% male) from 29 cohorts of the worldwide ENIGMA Schizotypy working group. Cortical and subcortical effect size maps with schizotypy scores were generated using standardized methods. Pattern similarities were assessed between the schizotypy-related cortical and subcortical maps and effect size maps from comparisons of schizophrenia (SZ), bipolar disorder (BD) and major depression (MDD) patients with controls. Thicker right medial orbitofrontal/ventromedial prefrontal cortex (mOFC/vmPFC) was associated with higher schizotypy scores (r = 0.067, pFDR = 0.02). The cortical thickness profile in schizotypy was positively correlated with cortical abnormalities in SZ (r = 0.285, pspin = 0.024), but not BD (r = 0.166, pspin = 0.205) or MDD (r = −0.274, pspin = 0.073). The schizotypy-related subcortical volume pattern was negatively correlated with subcortical abnormalities in SZ (rho = −0.690, pspin = 0.006), BD (rho = −0.672, pspin = 0.009), and MDD (rho = −0.692, pspin = 0.004). Comprehensive mapping of schizotypy-related brain morphometry in the general population revealed a significant relationship between higher schizotypy and thicker mOFC/vmPFC, in the absence of confounding effects due to antipsychotic medication or disease chronicity. The cortical pattern similarity between schizotypy and schizophrenia yields new insights into a dimensional neurobiological continuity across the extended psychosis phenotype.
Prefrontal GABA levels, hippocampal resting perfusion and the risk of psychosis
Preclinical models propose that the onset of psychosis is associated with hippocampal hyperactivity, thought to be driven by cortical GABAergic interneuron dysfunction and disinhibition of pyramidal neurons. Recent neuroimaging studies suggest that resting hippocampal perfusion is increased in subjects at ultra-high risk (UHR) for psychosis, but how this may be related to GABA concentrations is unknown. The present study used a multimodal neuroimaging approach to address this issue in UHR subjects. Proton magnetic resonance spectroscopy and pulsed-continuous arterial spin labeling imaging were acquired to investigate the relationship between medial prefrontal (MPFC) GABA+ levels (including some contribution from macromolecules) and hippocampal regional cerebral blood flow (rCBF) in 36 individuals at UHR of psychosis, based on preclinical evidence that MPFC dysfunction is involved in hippocampal hyperactivity. The subjects were then clinically monitored for 2 years: during this period, 7 developed a psychotic disorder and 29 did not. At baseline, MPFC GABA+ levels were positively correlated with rCBF in the left hippocampus (region of interest analysis, p = 0.044 family-wise error corrected, FWE). This correlation in the left hippocampus was significantly different in UHR subjects who went on to develop psychosis relative to those who did not (p = 0.022 FWE), suggesting the absence of a correlation in the latter subgroup. These findings provide the first human evidence that MPFC GABA+ concentrations are related to resting hippocampal perfusion in the UHR state, and offer some support for a link between GABA levels and hippocampal function in the development of psychosis.
Adverse clinical outcomes in people at clinical high-risk for psychosis related to altered interactions between hippocampal activity and glutamatergic function
Preclinical rodent models suggest that psychosis involves alterations in the activity and glutamatergic function in the hippocampus, driving dopamine activity through projections to the striatum. The extent to which this model applies to the onset of psychosis in clinical subjects is unclear. We assessed whether interactions between hippocampal glutamatergic function and activity/striatal connectivity are associated with adverse clinical outcomes in people at clinical high-risk (CHR) for psychosis. We measured functional Magnetic Resonance Imaging of hippocampal activation/connectivity, and 1H-Magnetic Resonance Spectroscopy of hippocampal glutamatergic metabolites in 75 CHR participants and 31 healthy volunteers. At follow-up, 12 CHR participants had transitioned to psychosis and 63 had not. Within the clinical high-risk cohort, at follow-up, 35 and 17 participants had a poor or a good functional outcome, respectively. The onset of psychosis (ppeakFWE = 0.003, t = 4.4, z = 4.19) and a poor functional outcome (ppeakFWE < 0.001, t = 5.52, z = 4.81 and ppeakFWE < 0.001, t = 5.25, z = 4.62) were associated with a negative correlation between the hippocampal activation and hippocampal Glx concentration at baseline. In addition, there was a negative association between hippocampal Glx concentration and hippocampo-striatal connectivity (ppeakFWE = 0.016, t = 3.73, z = 3.39, ppeakFWE = 0.014, t = 3.78, z = 3.42, ppeakFWE = 0.011, t = 4.45, z = 3.91, ppeakFWE = 0.003, t = 4.92, z = 4.23) in the total CHR sample, not seen in healthy volunteers. As predicted by preclinical models, adverse clinical outcomes in people at risk for psychosis are associated with altered interactions between hippocampal activity and glutamatergic function.