Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
15 result(s) for "Moewis, Philippe"
Sort by:
First-in-human application of dynamic fluoroscopic analysis to quantify intersegmental motion in mandibular free flap reconstruction
Osseous non-union following free flap reconstruction of segmental mandibular defects can prolong patients’ dental rehabilitation. Various plating systems have been developed to optimize biomechanical fixation, but healing may be retarded. Quantifying intersegmental micromovements could help monitor healing but remains challenging. This study investigates a novel method to visualize segmental movements during healing using a fluoroscopy-based approach. To track segment movements, tantalum beads were implanted intraoperatively in the osseous flap and native mandibular segments. Additionally, single-plane fluoroscopic imaging was performed to assess bead position at maximum mouth opening and intercuspation. Bead positions were merged as three-dimensional objects. Intersegmental movements were quantified using model-based roentgen stereophotogrammetry (mbRSA). Exemplarily, preliminary images were collected from one patient. Fluoroscopic imaging with mbRSA effectively displayed movements and allowed quantification. Translation and rotation were assessed between the native mandible and the flap during maximum mouth opening and intercuspation. For the first time, our analyses demonstrate the feasibility of quantifying segment mobility during healing. This first in men study illustrates the feasibility of the method to monitor intersegmental movements in cases of maxillofacial reconstructions. Further research involving larger patient cohorts is necessary to identify relevant thresholds and differentiate from those that result in lack of healing.
European Society of Biomechanics S.M. Perren Award 2022: Standardized tibio-femoral implant loads and kinematics
Knowledge of both tibio-femoral kinematics and kinetics is necessary for fully understanding knee joint biomechanics, guiding implant design and testing, and driving and validating computational models. In 2017, the CAMS-Knee datasets were presented, containing synchronized in vivo implant kinematics measured using a moving fluoroscope and tibio-femoral contact loads measured using instrumented implants from six subjects. However, to date, no representative summary of kinematics and kinetics obtained from measurements at the joint level of the same cohort of subjects exists. In this study, we present the CAMS-Knee standardized subject “Stan”, whose reference data include tibio-femoral kinematics and loading scenarios from all six subjects for level and downhill walking, stair descent, squat and sit-to-stand-to-sit. Using the peak-preserving averaging method by Bergmann and co-workers, we derived scenarios for generally high (CAMS-HIGH100), peak, and extreme loading. The CAMS-HIGH100 axial forces reached peaks between 3022 and 3856 N (3.08–3.93 body weight) for the five investigated activities. Anterior-posterior forces were about a factor of ten lower. The axial moment around the tibia was highest for level walking and squatting with peaks of 9.4 Nm and 10.5 Nm acting externally. Internal tibial rotations of up to 8.4° were observed during squat and sitting, while the walking activities showed approximately half the internal rotation. The CAMS-HIGH100 loads were comparable to Bergmann and co-workers’, but have the additional benefit of synchronized kinematics. Stan’s loads are +11 to +56% higher than the ISO 14243 wear testing standard loads, while the kinematics exhibit markedly different curve shapes. Along with the original CAMS-Knee datasets, Stan’s data can be requested at cams-knee.orthoload.com.
Physiological joint line total knee arthroplasty designs are especially sensitive to rotational placement – A finite element analysis
Mechanical and kinematical aligning techniques are the usual positioning methods during total knee arthroplasty. However, alteration of the physiological joint line and unbalanced medio-lateral load distribution are considered disadvantages in the mechanical and kinematical techniques, respectively. The aim of this study was to analyse the influence of the joint line on the strain and stress distributions in an implanted knee and their sensitivity to rotational mal-alignment. Finite element calculations were conducted to analyse the stresses in the PE-Inlay and the mechanical strains at the bone side of the tibia component-tibia bone interface during normal positioning of the components and internal and external mal-rotation of the tibial component. Two designs were included, a horizontal and a physiological implant. The loading conditions are based on internal knee joint loads during walking. A medialization of the stresses on the PE-Inlay was observed in the physiological implant in a normal position, accompanied by higher stresses in the mal-rotated positions. Within the tibia component-tibia bone interface, similar strain distributions were observed in both implant geometries in the normal position. However, a medialization of the strains was observed in the physiological implant in both mal-rotated conditions with greater bone volume affected by higher strains. Although evident changes due to mal-rotation were observed, the stresses do not suggest a local plastic deformation of the PE-Inlay. The strains values within most of the tibia component-tibia bone interface were in the physiological strain zone and no significant bone changes would be expected. The physiological cut on the articular aspect showed no detrimental effect compared to the horizontal implant.
PCL insufficient patients with increased translational and rotational passive knee joint laxity have no increased range of anterior–posterior and rotational tibiofemoral motion during level walking
Passive translational tibiofemoral laxity has been extensively examined in posterior cruciate ligament (PCL) insufficient patients and belongs to the standard clinical assessment. However, objective measurements of passive rotational knee laxity, as well as range of tibiofemoral motion during active movements, are both not well understood. None of these are currently quantified in clinical evaluations of patients with PCL insufficiency. The objective of this study was to quantify passive translational and rotational knee laxity as well as range of anterior–posterior and rotational tibiofemoral motion during level walking in a PCL insufficient patient cohort as a basis for any later clinical evaluation and therapy. The laxity of 9 patient knees with isolated PCL insufficiency or additionally posterolateral corner (PLC) insufficiency (8 males, 1 female, age 36.78 ± 7.46 years) were analysed and compared to the contralateral (CL) knees. A rotometer device with a C-arm fluoroscope was used to assess the passive tibiofemoral rotational laxity while stress radiography was used to evaluate passive translational tibiofemoral laxity. Functional gait analysis was used to examine the range of anterior–posterior and rotational tibiofemoral motion during level walking. Passive translational laxity was significantly increased in PCL insufficient knees in comparison to the CL sides (15.5 ± 5.9 mm vs. 3.7 ± 1.9 mm, p  < 0.01). Also, passive rotational laxity was significantly higher compared to the CL knees (26.1 ± 8.2° vs. 20.6 ± 5.6° at 90° knee flexion, p  < 0.01; 19.0 ± 6.9° vs. 15.5 ± 5.9° at 60° knee flexion, p  = 0.04). No significant differences were observed for the rotational (16.3 ± 3.7° vs. 15.2 ± 3.6°, p  = 0.43) and translational (17.0 ± 5.4 mm vs. 16.1 ± 2.8 mm, p  = 0.55) range of anterior–posterior and rotational tibiofemoral motion during level walking conditions for PCL insufficient knees compared to CL knees respectively. The present study illustrates that patients with PCL insufficiency show a substantial increased passive tibiofemoral laxity, not only in tibiofemoral translation but also in tibiofemoral rotation. Our data indicate that this increased passive multiplanar knee joint laxity can be widely compensated during level walking. Further studies should investigate progressive changes in knee joint laxity and kinematics post PCL injury and reconstruction to judge the individual need for therapy and effects of physiotherapy such as quadriceps force training on gait patterns in PCL insufficient patients.
Weight Bearing Activities change the Pivot Position after Total Knee Arthroplasty
The knee joint center of rotation is altered in the absence of the anterior cruciate ligament, which leads to substantially higher variance in kinematic patterns. To overcome this, total knee arthroplasty (TKA) designs with a high congruency in the lateral compartment have been proposed. The purpose of this study was to analyze the influence of a lateral pivot TKA-design on in-vivo knee joint kinematics. Tibiofemoral motion was retrospectively addressed in 10 patients during unloaded flexion-extension and loaded lunge using single plane fluoroscopy. During the unloaded flexion-extension movement, the lateral condyle remained almost stationary with little rollback at maximum flexion. The medial condyle exhibited anterior translation during the whole flexion cycle. During the loaded lunge movement, a higher degree of rollback compared to the unloaded activity was observed on the lateral condyle, whereas the medial condyle remained almost stationary. The results showed a clear lateral pivot during the unloaded activity, reflective of the implant’s geometric characteristics, and a change to a medial pivot and a higher lateral rollback during the weight-bearing conditions, revealing the impact of load and muscle force. It remains unclear if the kinematics with a lateral TKA design could be considered as physiological, due to the limited knowledge available on native knee joint kinematics.
Author Correction: Weight Bearing Activities change the Pivot Position after Total Knee Arthroplasty
An amendment to this paper has been published and can be accessed via a link at the top of the paper.An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Altered knee kinematics after posterior cruciate ligament single-bundle reconstruction—a comprehensive prospective biomechanical in vivo analysis
Purpose: Passive tibiofemoral anterior-posterior (AP) laxity has been extensively investigated after posterior cruciate ligament (PCL) single-bundle reconstruction. However, the PCL also plays an important role in providing rotational stability in the knee. Little is known in relation to the effects of PCL single-bundle reconstruction on passive tibiofemoral rotational laxity. Gait biomechanics after PCL reconstruction are even less understood. The aim of this study was a comprehensive prospective biomechanical in vivo analysis of the effect of PCL single-bundle reconstruction on passive tibiofemoral rotational laxity, passive anterior-posterior laxity, and gait pattern. Methods: Eight patients undergoing PCL single-bundle reconstruction (seven male, one female, mean age 35.6 ± 6.6 years, BMI 28.0 ± 3.6 kg/m 2 ) were analyzed preoperatively and 6 months postoperatively. Three of the eight patients received additional posterolateral corner (PLC) reconstruction. Conventional stress radiography was used to evaluate passive translational tibiofemoral laxity. A previously established rotometer device with a C-arm fluoroscope was used to assess passive tibiofemoral rotational laxity. Functional gait analysis was used to examine knee kinematics during level walking. Results: The mean side-to-side difference (SSD) in passive posterior translation was significantly reduced postoperatively (12.1 ± 4.4 mm vs. 4.3 ± 1.8 mm; p < 0.01). A significant reduction in passive tibiofemoral rotational laxity at 90° knee flexion was observed postoperatively (27.8° ± 7.0° vs. 19.9° ± 7.5°; p = 0.02). The range of AP tibiofemoral motion during level walking was significantly reduced in the reconstructed knees when compared to the contralateral knees at 6-month follow-up (16.6 ± 2.4 mm vs. 13.5 ± 1.6 mm; p < 0.01). Conclusion: PCL single-bundle reconstruction with optional PLC reconstruction reduces increased passive tibiofemoral translational and rotational laxity in PCL insufficient knees. However, increased passive tibiofemoral translational laxity could not be fully restored and patients showed altered knee kinematics with a significantly reduced range of tibiofemoral AP translation during level walking at 6-month follow-up. The findings of this study indicate a remaining lack of restoration of biomechanics after PCL single-bundle reconstruction in the active and passive state, which could be a possible cause for joint degeneration after PCL single-bundle reconstruction.
Influence of the Medial and Lateral Posterior Tibial Slope on Anterior Tibial Translation During Gait in Anterior Cruciate Ligament–Deficient Knees
Background: The posterior tibial slope (PTS) is a key determinant of knee biomechanics, with increased PTS values identified as a risk factor for anterior cruciate ligament (ACL) injuries and ACL graft failure. While the relationship between PTS and passive anterior tibial translation (ATT) is well-documented, its influence on dynamic ATT during gait remains unclear. Purpose: To evaluate the in vivo association between medial and lateral PTS (MPTS and LPTS, respectively), as well as lateral-medial PTS difference (ΔPTS), with dynamic and passive ATT in ACL-deficient knees compared with contralateral ACL-intact knees. Study Design: Descriptive laboratory study. Methods: A total of 13 patients with unilateral ACL tears undergoing ACL reconstruction at the authors’ orthopaedic sports medicine center were included in the analysis. Dynamic ATT was assessed using a motion capture–based gait analysis system during walking, while passive ATT was measured using a KT-1000 arthrometer. The contralateral ACL-sufficient knees of the participants were used as paired controls. PTS values (MPTS, LPTS, ΔPTS [LPTS minus MPTS]) were measured from computed tomography. Correlation analyses were performed to evaluate the relationships between PTS parameters and ATT during gait, as well as during passive assessment. Results: MPTS, LPTS, or ΔPTS values did not differ significantly between ACL-injured and healthy knees (P > .05). No significant correlations were identified in healthy knees or between MPTS/LPTS and ATT in either group.A strong inverse correlation was observed between ΔPTS and dynamic ATT in ACL-injured knees (r = −0.692; P = .014), particularly during the stance (r = −0.708; P = .015) and swing phases (r = −0.775; P = .005). Conclusion: The results suggest that lateral-medial asymmetry of the PTS (ΔPTS) may influence dynamic ATT in ACL-injured knees during gait. A greater LPTS relative to MPTS was associated with reduced dynamic ATT, whereas a lower LPTS relative to MPTS correlated with increased ATT. This directional relationship indicates that slope asymmetry could act as a restraint, potentially limiting anterior tibial shift during dynamic loading. The observed inverse correlation between ΔPTS and dynamic ATT indicates that this asymmetry could act as a restraint, potentially limiting anterior tibial shift. No significant correlations were identified between MPTS or LPTS individually and dynamic or passive ATT. Further studies are needed to validate these findings. Clinical Relevance: Considering the potential influence of lateral-medial tibial slope asymmetry on dynamic knee stability, these findings provide insight into the biomechanical function of the ACL-injured knee during gait.
Posterior tibial slope influences joint mechanics and soft tissue loading after total knee arthroplasty
As a solution to restore knee function and reduce pain, the demand for Total Knee Arthroplasty (TKA) has dramatically increased in recent decades. The high rates of dissatisfaction and revision makes it crucially important to understand the relationships between surgical factors and post-surgery knee performance. Tibial implant alignment in the sagittal plane (i.e., posterior tibia slope, PTS) is thought to play a key role in quadriceps muscle forces and contact conditions of the joint, but the underlying mechanisms and potential consequences are poorly understood. To address this biomechanical challenge, we developed a subject-specific musculoskeletal model based on the bone anatomy and precise implantation data provided within the CAMS-Knee datasets. Using the novel COMAK algorithm that concurrently optimizes joint kinematics, together with contact mechanics, and muscle and ligament forces, enabled highly accurate estimations of the knee joint biomechanics (RMSE <0.16 BW of joint contact force) throughout level walking and squatting. Once confirmed for accuracy, this baseline modelling framework was then used to systematically explore the influence of PTS on knee joint biomechanics. Our results indicate that PTS can greatly influence tibio-femoral translations (mainly in the anterior-posterior direction), while also suggesting an elevated risk of patellar mal-tracking and instability. Importantly, however, an increased PTS was found to reduce the maximum tibio-femoral contact force and improve efficiency of the quadriceps muscles, while also reducing the patellofemoral contact force (by approximately 1.5% for each additional degree of PTS during walking). This study presents valuable findings regarding the impact of PTS variations on the biomechanics of the TKA joint and thereby provides potential guidance for surgically optimizing implant alignment in the sagittal plane, tailored to the implant design and the individual deficits of each patient.
The Restoration of Passive Rotational Tibio-Femoral Laxity after Anterior Cruciate Ligament Reconstruction
While the anterior cruciate ligament (ACL) is considered one of the most important ligaments for providing knee joint stability, its influence on rotational laxity is not fully understood and its role in resisting rotation at different flexion angles in vivo remains unknown. In this prospective study, we investigated the relationship between in vivo passive axial rotational laxity and knee flexion angle, as well as how they were altered with ACL injury and reconstruction. A rotometer device was developed to assess knee joint rotational laxity under controlled passive testing. An axial torque of ±2.5Nm was applied to the knee while synchronised fluoroscopic images of the tibia and femur allowed axial rotation of the bones to be accurately determined. Passive rotational laxity tests were completed in 9 patients with an untreated ACL injury and compared to measurements at 3 and 12 months after anatomical single bundle ACL reconstruction, as well as to the contralateral controls. Significant differences in rotational laxity were found between the injured and the healthy contralateral knees with internal rotation values of 8.7°±4.0° and 3.7°±1.4° (p = 0.003) at 30° of flexion and 9.3°±2.6° and 4.0°±2.0° (p = 0.001) at 90° respectively. After 3 months, the rotational laxity remained similar to the injured condition, and significantly different to the healthy knees. However, after 12 months, a considerable reduction of rotational laxity was observed towards the levels of the contralateral controls. The significantly greater laxity observed at both knee flexion angles after 3 months (but not at 12 months), suggests an initial lack of post-operative rotational stability, possibly due to reduced mechanical properties or fixation stability of the graft tissue. After 12 months, reduced levels of rotational laxity compared with the injured and 3 month conditions, both internally and externally, suggests progressive rotational stability of the reconstruction with time.