Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
53 result(s) for "Moghadam, Neda"
Sort by:
Introducing a pyrazolopyrimidine as a multi-tyrosine kinase inhibitor, using multi-QSAR and docking methods
In cancer disease, which is one of the problems of today’s human societies, the expression of some tyrosine kinase receptors that are effective in the growth and proliferation of cancerous cells rises. Therefore, it is essential to develop and propose new drugs to target the receptors. Performing modeling calculations such as QSAR and docking makes the drug discovery process more efficient. Thus, backpropagation artificial neural network was used for multidimensional quantitative structure–activity relationship (QSAR) to identify essential features of pyrazolopyrimidine moiety, responsible for anticancer activity. The statistical parameters of the model show that multi-QSAR has sufficient validity and accuracy. According to the QSAR modeling, among 26 compounds, the interaction of eight candidates with EGFR, FGFR4, PDGFRA, and VEGFR2 was analyzed by docking modeling. The results showed that 1u compound binds to proteins in a more appropriate area (except FGFR4) with acceptable energy. The results of docking for VEGFR2 binding showed that 1u binds to the active site and binding site of receptor, and it was in the interaction with ten residues in the sites. Although the binding site of 1u molecule in the FGFR4 was not suitable, the binding free energy was excellent (− 9.22 kcal mol−1), which was less than those two anticancer drugs of gefitinib and regorafenib. Furthermore, the values of binding free energy were − 8.69, − 9.64, and − 9.19 kcal mol−1 for EGFR, PDGFRA, and VEGFR2, respectively. Therefore, this study introduces 1u as an anticancer agent that can inhibit the tyrosine kinase receptors. Graphic abstract
Quantitative genetics of temperature performance curves of Neurospora crassa
Earth’s temperature is increasing due to anthropogenic CO₂ emissions; and organisms need either to adapt to higher temperatures, migrate into colder areas, or face extinction. Temperature affects nearly all aspects of an organism’s physiology via its influence on metabolic rate and protein structure, therefore genetic adaptation to increased temperature may be much harder to achieve compared to other abiotic stresses. There is still much to be learned about the evolutionary potential for adaptation to higher temperatures, therefore we studied the quantitative genetics of growth rates in different temperatures that make up the thermal performance curve of the fungal model system Neurospora crassa. We studied the amount of genetic variation for thermal performance curves and examined possible genetic constraints by estimating the G-matrix. We observed a substantial amount of genetic variation for growth in different temperatures, and most genetic variation was for performance curve elevation. Contrary to common theoretical assumptions, we did not find strong evidence for genetic trade-offs for growth between hotter and colder temperatures. We also simulated short-term evolution of thermal performance curves of N. crassa, and suggest that they can have versatile responses to selection.
The Role of Storage Lipids in the Relation between Fecundity, Locomotor Activity, and Lifespan of Drosophila melanogaster Longevity-Selected and Control Lines
The contribution of insect fat body to multiple processes, such as development, metamorphosis, activity, and reproduction results in trade-offs between life history traits. In the present study, age-induced modulation of storage lipid composition in Drosophila melanogaster longevity-selected (L) and non-selected control (C) lines was studied and the correlation between total body fat mass and lifespan assessed. The trade-offs between fecundity, locomotor activity, and lifespan were re-evaluated from a lipid-related metabolic perspective. Fewer storage lipids in the L lines compared to the C lines supports the impact of body fat mass on extended lifespan. The higher rate of fecundity and locomotor activity in the L lines may increase the lipid metabolism and enhance the lipolysis of storage lipids, reducing fat reserves. The correlation between neutral lipid fatty acids and fecundity, as well as locomotor activity, varied across age groups and between the L and C lines. The fatty acids that correlated with egg production were different from the fatty acids that correlated with locomotor activity. The present study suggests that fecundity and locomotor activity may positively affect the lifespan of D. melanogaster through the inhibition of fat accumulation.
Responses to Developmental Temperature Fluctuation in Life History Traits of Five Drosophila Species (Diptera: Drosophilidae) from Different Thermal Niches
Temperature has profound effects on biochemical processes as suggested by the extensive variation in performance of organisms across temperatures. Nonetheless, the use of fluctuating temperature (FT) regimes in laboratory experiments compared to constant temperature (CT) regimes is still mainly applied in studies of model organisms. We investigated how two amplitudes of developmental temperature fluctuation (22.5/27.5 °C and 20/30 °C, 12/12 h) affected several fitness-related traits in five Drosophila species with markedly different thermal resistance. Egg-to-adult viability did not change much with temperature except in the cold-adapted D. immigrans. Developmental time increased with FT among all species compared to the same mean CT. The impact of FT on wing size was quite diverse among species. Whereas wing size decreased quasi-linearly with CT in all species, there were large qualitative differences with FT. Changes in wing aspect ratio due to FT were large compared to the other traits and presumably a consequence of thermal stress. These results demonstrate that species of the same genus but with different thermal resistance can show substantial differences in responses to fluctuating developmental temperatures not predictable by constant developmental temperatures. Testing multiple traits facilitated the interpretation of responses to FT in a broader context.
Host’s genetic background determines the outcome of reciprocal faecal transplantation on life-history traits and microbiome composition
Background Microbes play a role in their host's fundamental ecological, chemical, and physiological processes. Host life-history traits from defence to growth are therefore determined not only by the abiotic environment and genotype but also by microbiota composition. However, the relative importance and interactive effects of these factors may vary between organisms. Such connections remain particularly elusive in Lepidoptera, which have been argued to lack a permanent microbiome and have microbiota primarily determined by their diet and environment. We tested the microbiome specificity and its influence on life-history traits of two colour genotypes of the wood tiger moth ( Arctia plantaginis ) that differ in several traits, including growth. All individuals were grown in the laboratory for several generations with standardized conditions. We analyzed the bacterial community of the genotypes before and after a reciprocal frass (i.e., larval faeces) transplantation and followed growth rate, pupal mass, and the production of defensive secretion. Results After transplantation, the fast-growing genotype grew significantly slower compared to the controls, but the slow-growing genotype did not change its growth rate. The frass transplant also increased the volume of defensive secretions in the fast-growing genotype but did not affect pupal mass. Overall, the fast-growing genotype appeared more susceptible to the transplantation than the slow-growing genotype. Microbiome differences between the genotypes strongly suggest genotype-based selective filtering of bacteria from the diet and environment. A novel cluster of insect-associated Erysipelotrichaceae was exclusive to the fast-growing genotype, and specific Enterococcaceae were characteristic to the slow-growing genotype. These Enterococcaceae became more prevalent in the fast-growing genotype after the transplant, which suggests that a slower growth rate is potentially related to their presence. Conclusions We show that reciprocal frass transplantation can reverse some genotype-specific life-history traits in a lepidopteran host. The results indicate that genotype-specific selective filtering can fine-tune the bacterial community at specific life stages and tissues like the larval frass, even against a background of a highly variable community with stochastic assembly. Altogether, our findings suggest that the host's genotype can influence its susceptibility to being colonized by microbiota, impacting key life-history traits.
Evaluating Daily Cell-Phone Use in Elderly and Its Effect on Lifestyle, Isfahan Comprehensive Health Care Centers
The seniors' lifestyle is an important public-health issue. Hence, assessing the association of cell phone use as a rapidly spreading technology on older adults' lifestyle can be useful for planning prevention and health-promotion policies. This cross-sectional study was conducted from March 2020 to March 2021 in Isfahan Comprehensive Health Care Centers to investigate the impact of cell phone use on the lifestyle of the elderly. The Cell-Phone Over-Use Scale and the lifestyle checklist were the assessment tools employed for this purpose. Of the 300 participants with a mean age of 67.93 ± 5.14 years, 46% were male and 54% female. The average value of cell phone usage score was 47.88 ± 26.56, which was categorized into low 36%, moderate 41%, and overuse 23%. A positive and significant correlation was reported between the level of cell phone use in males (β =10.711, [0.95 confidence interval {CI} =4.262-17.160]) and people who have used a substance or opium in the past year (β =10.819, [0.95 CI = 3.677-17.961]). The present results found no significant association between cell phone use patterns and age, level of education, body mass index, television time, sports time, smoking in the past year, marital relationship, and living alone. In this study, we demonstrated a correlation between cell phone use and some demographic and lifestyle variables, namely sex and drug abuse.
Effects of photoperiod on life‐history and thermal stress resistance traits across populations of Drosophila subobscura
Introduction Organisms use environmental cues to match their phenotype with the future availability of resources and environmental conditions. Changes in the magnitude and frequency of environmental cues such as photoperiod and temperature along latitudes can be used by organisms to predict seasonal changes. While the role of temperature variation on the induction of plastic and seasonal responses is well established, the importance of photoperiod for predicting seasonal changes is less explored. Materials and methods Here we studied changes in life‐history and thermal stress resistance traits in Drosophila subobscura in response to variation in photoperiod (6:18, 12:12 and 18:6 light:dark cycles) mimicking seasonal variations in day length. The populations of D. subobscura were collected from five locations along a latitudinal gradient (from North Africa and Europe). These populations were exposed to different photoperiods for two generations, whereafter egg‐to‐adult viability, productivity, dry body weight, thermal tolerance, and starvation resistance were assessed. Results We found strong effects of photoperiod, origin of populations, and their interactions on life‐history and stress resistance traits. Thermal resistance varied between the populations and the effect of photoperiod depended on the trait and the method applied for the assessment of thermal resistance. Perspectives Our results show a strong effect of the origin of population and photoperiod on a range of fitness‐related traits and provide evidence for local adaptation to environmental cues (photoperiod by population interaction). The findings emphasize an important and often neglected role of photoperiod in studies on thermal resistance and suggest that cues induced by photoperiod may provide some buffer enabling populations to cope with a more variable and unpredictable future climate. We investigate the importance of photoperiod in shaping the evolutionary and plastic responses to seasonal climates. The results show strong effects of photoperiod, origin of populations, and their interactions on life‐history and stress resistance traits. Thermal resistance varied between the populations and the effect of photoperiod depended on the trait and the method applied for the assessment of thermal resistance.
Rapid Evolutionary Adaptation to Diet Composition in the Black Soldier Fly (Hermetia illucens)
Genetic adaptation of Hermetia illucens (BSF) to suboptimal single sourced waste streams can open new perspectives for insect production. Here, four BSF lines were maintained on a single sourced, low-quality wheat bran diet (WB) or on a high-quality chicken feed diet (CF) for 13 generations. We continuously evaluated presumed evolutionary responses in several performance traits to rearing on the two diets. Subsequently, we tested responses to interchanged diets, i.e., of larvae that had been reared on low-quality feed and tested on high-quality feed and vice versa to evaluate costs associated with adaptation to different diets. BSF were found to experience rapid adaptation to the diet composition. While performances on the WB diet were always inferior to the CF diet, the adaptive responses were stronger to the former diet. This stronger response was likely due to stronger selection pressure experienced by BSF fed on the low-quality single sourced diet. The interchanged diet experiment found no costs associated with diet adaptation, but revealed cross generational gain associated with the parental CF diet treatment. Our results revealed that BSF can rapidly respond adaptively to diet, although the mechanisms are yet to be determined. This has potential to be utilized in commercial insect breeding to produce lines tailored to specific diets.
Evaluating quality indicators in colorectal cancer screening via fecal immunochemical tests: a five-year study from a developing country
Background Assessing quality indicators in colorectal cancer (CRC) screening via the fecal immunochemical test (FIT) is crucial. However, data on developing countries with lower CRC rates, lifestyle transitions, newly established screening programs, and no consensus on optimal targets are scarce. Methods This analysis evaluated 2,209 average-risk individuals aged 50–70 years in Iran between 2017 and 2022. The polyp detection rate (PDR), adenoma detection rate (ADR), sessile serrated lesion detection rate (SDR), and adenomas per colonoscopy (APC) were calculated. Patient relationships with the center, colonoscopist, bowel preparation, and comorbidities were assessed. Additionally, potential risk factors for bowel preparation quality were examined. Results The analysis revealed a PDR of 34.5%, an ADR of 25.3%, an advanced ADR of 10%, a proximal ADR of 13.0%, an SDR of 1%, and a CRC rate of 2.7%. After adjustment, adenoma risk was greater in men (OR 1.84; 95% CI 1.49–2.69; p  < 0.01) and those aged 60–69 (OR 1.28; 95% CI 1.04–1.58; p  = 0.02), with similar trends for other detection rates. Polyps but not adenomas were more common in public centers (OR 1.28; 95% CI 1.04–1.57; p  = 0.02) and among the academic group (OR 1.34; 95% CI 1.07–1.68; p  = 0.01). PDR and APC were higher in colonoscopies with cecal intubation ( p  < 0.05). Bowel preparation quality was higher in private centers, with academic physicians, and among patients with a BMI < 30 ( p  < 0.05). Conclusion The results provide early evidence of proposed ADR targets in developing countries. Given that the ADR depends on background epidemiology, implementing a dynamic, standard living point system based on extensive data is crucial. We recommend updating physicians on screening guidelines, prioritizing men, older adults, diabetic patients, and obese individuals.
Experimental Evolution under Fluctuating Thermal Conditions Does Not Reproduce Patterns of Adaptive Clinal Differentiation in Drosophila melanogaster
Experimental evolution can be a useful tool for testing the impact of environmental factors on adaptive changes in populations, and this approach is being increasingly used to understand the potential for evolutionary responses in populations under changing climates. However, selective factors will often be more complex in natural populations than in laboratory environments and produce different patterns of adaptive differentiation. Here we test the ability of laboratory experimental evolution under different temperature cycles to reproduce well-known patterns of clinal variation in Drosophila melanogaster. Six fluctuating thermal regimes mimicking the natural temperature conditions along the east coast of Australia were initiated. Contrary to expectations, on the basis of field patterns there was no evidence for adaptation to thermal regimes as reflected by changes in cold and heat resistance after 1–3 years of laboratory natural selection. While laboratory evolution led to changes in starvation resistance, development time, and body size, patterns were not consistent with those seen in natural populations. These findings highlight the complexity of factors affecting trait evolution in natural populations and indicate that caution is required when inferring likely evolutionary responses from the outcome of experimental evolution studies.