Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
75
result(s) for
"Mok, Fai"
Sort by:
DDX27 in cancer: molecular mechanisms, clinical implications, and therapeutic potential
2025
Background
DDX27, a member of the DEAD-box RNA helicase family, plays a pivotal role in RNA metabolism and is essential for diverse cellular processes, including transcription, pre-mRNA splicing, translation, and ribosome biogenesis. Recent findings have implicated DDX27 as a substantial contributor to tumorigenesis and cancer progression across various malignancies, establishing its significance as a molecular hub that interacts with key oncogenic partners such as major vault protein (MVP) and nucleophosmin 1 (NPM1).
Methods
We conducted systematic search in the following comprehensive academic databases: PubMed, MEDLINE or Web of Science. The keywords such as DDX27, DEAD-box protein 27, RNA helicase DDX27 and cancer, tumor or carcinoma were used for searching. This review consolidates the existing literature on DDX27, examining its structural features and biological functions within the context of tumorigenesis. We systematically explore the molecular mechanisms by which DDX27 influences tumor development and progression, focusing particularly on its roles across different cancer types, including colorectal cancer (CRC), gastric cancer (GC), breast cancer (BC), hepatocellular carcinoma (HCC), and oral squamous cell carcinoma (OSCC). Key molecular mechanisms such as NF-κB activation and ERK1/2 phosphorylation involved in DDX27-related pathways are discussed.
Results
Our comprehensive summary elucidates the context-dependent roles of DDX27 across various cancers, highlighting its associations with advanced disease stages, metastasis, and therapeutic resistance. We also assess the potential of DDX27 as a diagnostic and prognostic biomarker, correlating its expression levels with negative clinical outcomes.
Conclusion
Novel therapeutic strategies targeting DDX27 are proposed, including RNA interference techniques (siRNA and shRNA), miRNA-based therapies (miR-617 mimics), pathway modulation, and synthetic lethality approaches. Furthermore, we identify notable limitations in current research surrounding DDX27 and offer potential avenues for future investigation. These innovative strategies present significant promise for the development of precision cancer therapies aimed at improving treatment outcomes for patients.
Journal Article
Neferine induces autophagy-dependent cell death in apoptosis-resistant cancers via ryanodine receptor and Ca2+-dependent mechanism
2019
Resistance of cancer cells to chemotherapy is a significant clinical concern and mechanisms regulating cell death in cancer therapy, including apoptosis, autophagy or necrosis, have been extensively investigated over the last decade. Accordingly, the identification of medicinal compounds against chemoresistant cancer cells
via
new mechanism of action is highly desired. Autophagy is important in inducing cell death or survival in cancer therapy. Recently, novel autophagy activators isolated from natural products were shown to induce autophagic cell death in apoptosis-resistant cancer cells in a calcium-dependent manner. Therefore, enhancement of autophagy may serve as additional therapeutic strategy against these resistant cancers. By computational docking analysis, biochemical assays, and advanced live-cell imaging, we identified that neferine, a natural alkaloid from
Nelumbo nucifera
, induces autophagy by activating the ryanodine receptor and calcium release. With well-known apoptotic agents, such as staurosporine, taxol, doxorubicin, cisplatin and etoposide, utilized as controls, neferine was shown to induce autophagic cell death in a panel of cancer cells, including apoptosis-defective and -resistant cancer cells or isogenic cancer cells,
via
calcium mobilization through the activation of ryanodine receptor and Ulk-1-PERK and AMPK-mTOR signaling cascades. Taken together, this study provides insights into the cytotoxic mechanism of neferine-induced autophagy through ryanodine receptor activation in resistant cancers.
Journal Article
Potential enhancement of post-stroke angiogenic response by targeting the oligomeric aggregation of p53 protein
by
Wong, Vincent Kam Wai
,
Zhu, Dongxing
,
Vong, Heng Wai
in
Angiogenesis
,
Atherosclerosis
,
Blood clots
2023
Tumor suppressor gene p53 and its aggregate have been found to be involved in many angiogenesis-related pathways. We explored the possible p53 aggregation formation mechanisms commonly occur after ischemic stroke, such as hypoxia and the presence of reactive oxygen species (ROS). The angiogenic pathways involving p53 mainly occur in nucleus or cytoplasm, with one exception that occurs in mitochondria. Considering the high mitochondrial density in brain and endothelial cells, we proposed that the cyclophilin D (CypD)-dependent vascular endothelial cell (VECs) necrosis pathway occurring in the mitochondria is one of the major factors that affects angiogenesis. Hence, targeting p53 aggregation, a key intermediate in the pathway, could be an alternative therapeutic target for post-stroke management.
Journal Article
Unraveling the Fungal Community Dynamics in Heat-Tolerant Coral Turbinaria sp. During Bleaching in South China Sea
2025
Coral bleaching is a multifactorial stress response in which the breakdown of symbiosis with algal and bacterial partners has been well characterized, but the role of fungal communities remains largely unexplored. Here, we tracked the temporal dynamics of coral-associated fungi in Turbinaria sp. across three defined bleaching stages under natural thermal stress. In total, 161 genera from six phyla were detected. From the unbleached to partly bleached stage, fungal Simpson diversity declined, whereas observed richness slightly increased; putative pathogenic genera (e.g., Apiotrichum, Curvularia, Exserohilum, and Schizophyllum) rose sharply (39.44%→69.04%), whereas parasitic fungi decreased (33.01%→11.72%). From the partly to fully bleached stage, diversity rebounded. Co-occurrence networks became more complex initially (nodes 86→98; edges 454→809; average degree 10.56→16.51) but then collapsed below baseline (nodes 98→65; edges 809→196; average degree 16.51→6.03), indicating stress-driven restructuring. The proportion of positive correlations declined steadily (98.68%→93.82%→77.55%), suggesting a shift toward more competitive and unstable community structures under stress. Our findings demonstrate that fungal communities actively respond to thermal stress and exhibit distinct compositional and ecological shifts during bleaching, pointing to their overlooked but potentially significant role in coral health and deterioration. This study highlights the need to integrate fungal dynamics into the broader understanding of holobiont responses to coral bleaching.
Journal Article
HM30181A, a potent P-glycoprotein inhibitor, potentiates the absorption and in vivo antitumor efficacy of paclitaxel in an orthotopic brain tumor model
by
Yiu Nam Lau, Johnson
,
Zeng, Wu
,
Ka Yan Ho, Rebecca
in
Antitumor activity
,
Bioavailability
,
Blood-brain barrier
2020
Delivery of chemotherapeutic drugs to the brain has remained a major obstacle in the treatment of glioma, owing to the presence of the blood-brain barrier and the activity of P-gp, which pumps its substrate back into the systemic circulation. The aim of the present study was to develop an intravenous formulation of HM30181A (HM) to inhibit P-gp in the brain to effectively deliver paclitaxel (PTX) for the treatment of malignant glioma.
Two formulations of solubilized HM were designed on the basis of different solid dispersion strategies: i) spray-drying [polyvinlypyrrolidone (PVP)-HM] and ii) solvent evaporation [HP-β-cyclodextrin (cyclodextrin)-HM]. The P-gp inhibition of these 2 formulations was assessed on the basis of rhodamine 123 uptake in cancer cells. Blood and brain pharmacokinetic parameters were also determined, and the antitumor effect of cyclodextrin-HM with PTX was evaluated in an orthotopic glioma xenograft mouse model.
Although both PVP-HM and cyclodextrin-HM formulations showed promising P-gp inhibition activity
, cyclodextrin-HM had a higher maximum tolerated dose in mice than did PVP-HM. Pharmacokinetic study of cyclodextrin-HM revealed a plasma concentration plateau at 20 mg/kg, and the mice began to lose weight at doses above this level. Cyclodextrin-HM (10 mg/kg) administered with PTX at 10 mg/kg showed optimal antitumor activity in a mouse model, according to both tumor volume measurement and survival time (
< 0.05).
In a mouse orthotopic brain tumor model, the intravenous co-administration of cyclodextrin-HM with PTX showed potent antitumor effects and therefore may have potential for glioma therapy in humans.
Journal Article
AGEs-Induced Calcification and Apoptosis in Human Vascular Smooth Muscle Cells Is Reversed by Inhibition of Autophagy
by
Ricardo de Seabra Rodrigues Dias, Ivo
,
Fai Mok, Simon Wing
,
Han, Yu
in
Advanced glycosylation end products
,
ages
,
Antibodies
2021
Vascular calcification (VC) in macrovascular and peripheral blood vessels is one of the main factors leading to diabetes mellitus (DM) and death. Apart from the induction of vascular calcification, advanced glycation end products (AGEs) have also been reported to modulate autophagy and apoptosis in DM. Autophagy plays a role in maintaining the stabilization of the external and internal microenvironment. This process is vital for regulating arteriosclerosis. However, the internal mechanisms of this pathogenic process are still unclear. Besides, the relationship among autophagy, apoptosis, and calcification in HASMCs upon AGEs exposure has not been reported in detail. In this study, we established a calcification model of SMC through the intervention of AGEs. It was found that the calcification was upregulated in AGEs treated HASMCs when autophagy and apoptosis were activated. In the country, AGEs-activated calcification and apoptosis were suppressed in Atg7 knockout cells or pretreated with wortmannin (WM), an autophagy inhibitor. These results provide new insights to conduct further investigations on the potential clinical applications for autophagy inhibitors in the treatment of diabetes-related vascular calcification.
Journal Article
Modulation of alveolar macrophage and mitochondrial fitness by medicinal plant-derived nanovesicles to mitigate acute lung injury and viral pneumonia
by
Liao, Wucan
,
Mok, Simon Wing Fai
,
Chen, Changjiang
in
Acute lung injury
,
Acute respiratory distress syndrome
,
Alveolar macrophages
2024
Acute lung injury (ALI) is generally caused by severe respiratory infection and characterized by overexuberant inflammatory responses and inefficient pathogens-containing, the two major processes wherein alveolar macrophages (AMs) play a central role. Dysfunctional mitochondria have been linked with distorted macrophages and hence lung disorders, but few treatments are currently available to correct these defects. Plant-derive nanovesicles have gained significant attention because of their therapeutic potential, but the targeting cells and the underlying mechanism remain elusive. We herein prepared the nanovesicles from Artemisia annua, a well-known medicinal plant with multiple attributes involving anti-inflammatory, anti-infection, and metabolism-regulating properties. By applying three mice models of acute lung injury caused by bacterial endotoxin, influenza A virus (IAV) and SARS-CoV-2 pseudovirus respectively, we showed that Artemisia-derived nanovesicles (ADNVs) substantially alleviated lung immunopathology and raised the survival rate of challenged mice. Macrophage depletion and adoptive transfer studies confirmed the requirement of AMs for ADNVs effects. We identified that gamma-aminobutyric acid (GABA) enclosed in the vesicles is a major molecular effector mediating the regulatory roles of ADNVs. Specifically, GABA acts on macrophages through GABA receptors, promoting mitochondrial gene programming and bioenergy generation, reducing oxidative stress and inflammatory signals, thereby enhancing the adaptability of AMs to inflammation resolution. Collectively, this study identifies a promising nanotherapeutics for alleviating lung pathology, and elucidates a mechanism whereby the canonical neurotransmitter modifies AMs and mitochondria to resume tissue homeostasis, which may have broader implications for treating critical pulmonary diseases such as COVID-19.
Journal Article
New Potential Pharmacological Functions of Chinese Herbal Medicines via Regulation of Autophagy
2016
Autophagy is a universal catabolic cellular process for quality control of cytoplasm and maintenance of cellular homeostasis upon nutrient deprivation and environmental stimulus. It involves the lysosomal degradation of cellular components such as misfolded proteins or damaged organelles. Defects in autophagy are implicated in the pathogenesis of diseases including cancers, myopathy, neurodegenerations, infections and cardiovascular diseases. In the recent decade, traditional drugs with new clinical applications are not only commonly found in Western medicines, but also highlighted in Chinese herbal medicines (CHM). For instance, pharmacological studies have revealed that active components or fractions from Chaihu (Radix bupleuri), Hu Zhang (Rhizoma polygoni cuspidati), Donglingcao (Rabdosia rubesens), Hou po (Cortex magnoliae officinalis) and Chuan xiong (Rhizoma chuanxiong) modulate cancers, neurodegeneration and cardiovascular disease via autophagy. These findings shed light on the potential new applications and formulation of CHM decoctions via regulation of autophagy. This article reviews the roles of autophagy in the pharmacological actions of CHM and discusses their new potential clinical applications in various human diseases.
Journal Article
1,4-dihydroxy-2-naphthoic Acid Induces Apoptosis in Human Keratinocyte : Potential Application for Psoriasis Treatment
by
Sham, Kathy Wai-Yan
,
Mok, Chong-Fai
,
Xie, Chuan-Ming
in
Anthraquinone
,
Apoptosis
,
Cancer therapies
2013
Psoriasis, which affects approximately 1–3% of the population worldwide, is a chronic inflammatory skin disorder characterized by epidermal keratinocytes hyperproliferation, abnormal differentiation, and inflammatory infiltration. Decrease in keratinocyte apoptosis is a specific pathogenic phenomenon in psoriasis. Chinese herbs have been used for the treatment of psoriasis in China showing promising effect in clinical trials. A traditional Chinese medicine has relatively fewer side effects with longer remission time and lower recurrence rate. The extract of Rubia cordifolia L. (EA) was previously found by us to induce HaCaT keratinocytes apoptosis. In this study we identified one of the components in Rubia cordifolia L., the anthraquinone precursor 1,4-dihydroxy-2-naphthoic acid (DHNA), induces HaCaT keratinocytes apoptosis through G0/G1 cell cycle arrest. We have also demonstrated that DHNA acts through both caspase-dependent and caspase-independent pathways. Besides, cytotoxicity and IL-1α release assays indicate that DHNA causes less irritation problems than dithranol, which is commonly employed to treat psoriasis in many countries. Since DHNA possesses similar apoptotic effects on keratinocytes as dithranol but causes less irritation, DHNA therefore constitutes a promising alternative agent for treating psoriasis. Our studies also provide an insight on the potential of using EA and DHNA, alternatively, as a safe and effective treatment modality for psoriasis.
Journal Article
Autophagic degradation of epidermal growth factor receptor in gefitinib-resistant lung cancer by celastrol
by
Law, Betty Yuen Kwan
,
Wong, Vincent Kam Wai
,
Fan, Xing Xing
in
autophagy
,
calcium
,
Cancer therapies
2016
Drug resistance of non-small cell lung cancer (NSCLC) is highly correlated to the mutation of the epidermal growth factor receptor (EGFR). Although EGFR tyrosine kinase inhibitors (TKIs) are available clinically, the molecular complexity of NSCLC has made it necessary to search for alternative therapeutic approaches to overcome the drug resistance of NSCLC. In the present study, we identified a triterpene molecule derived from the herbal plant Tripterygium wilfordii, celastrol, as a novel autophagy inducer. We demonstrate that celastrol exhibited selective cytotoxic effect towards EGFR mutant NSCLCs. In addition, celastrol also facilitated the autophagic degradation of Hsp90 client protein including EGFR and Akt on both EGFR wild-type and mutant NSCLCs via calcium-mediated autophagy. Blockage of celastrol-induced autophagic degradation of EGFR by autophagic inhibitor or calcium chelator decreased celastrol-mediated cell death in gefitinib-resistant NSCLCs. Overall, our findings suggest that celastrol may be developed as an effective anticancer agent for treatment of gefitinib-resistant NSCLC in the future.
Journal Article