Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
165
result(s) for
"Mokeev, V."
Sort by:
Modified structure of protons and neutrons in correlated pairs
2019
The atomic nucleus is made of protons and neutrons (nucleons), which are themselves composed of quarks and gluons. Understanding how the quark–gluon structure of a nucleon bound in an atomic nucleus is modified by the surrounding nucleons is an outstanding challenge. Although evidence for such modification—known as the EMC effect—was first observed over 35 years ago, there is still no generally accepted explanation for its cause
1
–
3
. Recent observations suggest that the EMC effect is related to close-proximity short-range correlated (SRC) nucleon pairs in nuclei
4
,
5
. Here we report simultaneous, high-precision measurements of the EMC effect and SRC abundances. We show that EMC data can be explained by a universal modification of the structure of nucleons in neutron–proton SRC pairs and present a data-driven extraction of the corresponding universal modification function. This implies that in heavier nuclei with many more neutrons than protons, each proton is more likely than each neutron to belong to an SRC pair and hence to have distorted quark structure. This universal modification function will be useful for determining the structure of the free neutron and thereby testing quantum chromodynamics symmetry-breaking mechanisms and may help to discriminate between nuclear physics effects and beyond-the-standard-model effects in neutrino experiments.
Simultaneous high-precision measurements of the EMC effect and short-range correlated abundances for several nuclei reveal a universal modification of the structure of nucleons in short-range correlated neutron–proton pairs.
Journal Article
Probing high-momentum protons and neutrons in neutron-rich nuclei
2018
The atomic nucleus is one of the densest and most complex quantum-mechanical systems in nature. Nuclei account for nearly all the mass of the visible Universe. The properties of individual nucleons (protons and neutrons) in nuclei can be probed by scattering a high-energy particle from the nucleus and detecting this particle after it scatters, often also detecting an additional knocked-out proton. Analysis of electron- and proton-scattering experiments suggests that some nucleons in nuclei form close-proximity neutron–proton pairs
1
–
12
with high nucleon momentum, greater than the nuclear Fermi momentum. However, how excess neutrons in neutron-rich nuclei form such close-proximity pairs remains unclear. Here we measure protons and, for the first time, neutrons knocked out of medium-to-heavy nuclei by high-energy electrons and show that the fraction of high-momentum protons increases markedly with the neutron excess in the nucleus, whereas the fraction of high-momentum neutrons decreases slightly. This effect is surprising because in the classical nuclear shell model, protons and neutrons obey Fermi statistics, have little correlation and mostly fill independent energy shells. These high-momentum nucleons in neutron-rich nuclei are important for understanding nuclear parton distribution functions (the partial momentum distribution of the constituents of the nucleon) and changes in the quark distributions of nucleons bound in nuclei (the EMC effect)
1
,
13
,
14
. They are also relevant for the interpretation of neutrino-oscillation measurements
15
and understanding of neutron-rich systems such as neutron stars
3
,
16
.
Electron-scattering experiments reveal that the fraction of high-momentum protons in medium-to-heavy nuclei increases considerably with neutron excess, whereas that of high-momentum neutrons decreases slightly, in contrast to shell-model predictions.
Journal Article
Electron-beam energy reconstruction for neutrino oscillation measurements
by
Mahn, K.
,
Piasetzky, E.
,
Betancourt, M.
in
639/766/387/1126
,
639/766/419/1131
,
Atoms & subatomic particles
2021
Neutrinos exist in one of three types or ‘flavours’—electron, muon and tau neutrinos—and oscillate from one flavour to another when propagating through space. This phenomena is one of the few that cannot be described using the standard model of particle physics (reviewed in ref.
1
), and so its experimental study can provide new insight into the nature of our Universe (reviewed in ref.
2
). Neutrinos oscillate as a function of their propagation distance (
L
) divided by their energy (
E
). Therefore, experiments extract oscillation parameters by measuring their energy distribution at different locations. As accelerator-based oscillation experiments cannot directly measure
E
, the interpretation of these experiments relies heavily on phenomenological models of neutrino–nucleus interactions to infer
E
. Here we exploit the similarity of electron–nucleus and neutrino–nucleus interactions, and use electron scattering data with known beam energies to test energy reconstruction methods and interaction models. We find that even in simple interactions where no pions are detected, only a small fraction of events reconstruct to the correct incident energy. More importantly, widely used interaction models reproduce the reconstructed energy distribution only qualitatively and the quality of the reproduction varies strongly with beam energy. This shows both the need and the pathway to improve current models to meet the requirements of next-generation, high-precision experiments such as Hyper-Kamiokande (Japan)
3
and DUNE (USA)
4
.
Electron scattering measurements are shown to reproduce only qualitatively state-of-the-art lepton–nucleus energy reconstruction models, indicating that improvements to these particle-interaction models are required to ensure the accuracy of future high-precision neutrino oscillation experiments.
Journal Article
Momentum sharing in imbalanced Fermi systems
2014
The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using 12C, 27Al, 56Fe, and 208Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin–state, ultracold atomic gas systems.
Journal Article
Measurement of the proton spin structure at long distances
2021
Measuring the spin structure of protons and neutrons tests our understanding of how they arise from quarks and gluons, the fundamental building blocks of nuclear matter. At long distances, the coupling constant of the strong interaction becomes large, requiring non-perturbative methods to calculate quantum chromodynamics processes, such as lattice gauge theory or effective field theories. Here we report proton spin structure measurements from scattering a polarized electron beam off polarized protons. The spin-dependent cross-sections were measured at large distances, corresponding to the region of low momentum transfer squared between 0.012 and 1.0 GeV2. This kinematic range provides unique tests of chiral effective field theory predictions. Our results show that a complete description of the nucleon spin remains elusive, and call for further theoretical works, for example, in lattice quantum chromodynamics. Finally, our data extrapolated to the photon point agree with the Gerasimov–Drell–Hearn sum rule, a fundamental prediction of quantum field theory that relates the anomalous magnetic moment of the proton to its integrated spin-dependent cross-sections.Measurements of the proton’s spin structure in experiments scattering a polarized electron beam off polarized protons in regions of low momentum transfer squared test predictions from chiral effective field theory of the strong interaction.
Journal Article
Improvement of distance protection algorithms based on phasor measurements
2023
Distance protection of overhead lines is widely used and is continually being improved. However, the distance protection cannot work stably and is blocked in several electromechanical transients. Additionally, a non-linear arc can affect the stability of the distance protection in case of a short-circuit. The authors consider ways to improve distance protection during such transients. In particular, this paper proposes the use of synchronized phasor measurement technology to improve the efficiency of distance protection. This paper considers a new approach for the analysis of electromechanical and electromagnetic transients in a power system using process synchrophasors. As examples, cases of a short-circuit in a line with oneway and two-way powers are considered. The authors consider the influence of a non-linear arc at the fault point and consider the possibility of the coincidence of the electromechanical and electromagnetic transients. The result is a new algorithm for operating distance protection, an improvement in the parametric method for determining the location of line damage. The calculations performed and mathematical modeling confirm the effectiveness of the proposed algorithm.
Journal Article
Polarized Proton Structure in the Resonance Region
2023
In view of the precise data available on inclusive polarized electron scattering off polarized proton targets in the nucleon resonance excitation region, we compare these results with the coherent sum of resonant contributions to the polarized structure function g1 and virtual photon asymmetry A1. To this goal, we employ the nucleon resonance electroexcitation amplitudes determined for photon virtualities Q2 < 5.0 GeV2 from analyses of the CLAS data on exclusive electroproduction off protons in the resonance region. Most of the well established resonances of four star PDG status in the mass range up to 1.75 GeV are included. We find that the resonance-like structures observed in the inclusive g1 data are related to the resonant contributions in the entire range of photon virtuality Q2 where the data on g1 are available. In the range of invariant mass of the final hadron system W > 1.5 GeV, the data on the asymmetry A1 are well reproduced even when accounting for resonant contributions only, especially for the larger values of Q2 and energies analysed. This observation offers an interesting hint to quark-hadron duality seen in polarized inclusive electron scattering observables.
Journal Article
Recent results on the nucleon resonance spectrum and structure from the CLAS detector
2016
The CLAS detector at Jefferson Lab has provided the dominant part of all available worldwide data on exclusive meson electroproduction off protons in the resonance region. New results on the γυpN* transition amplitudes (electrocouplings) are available from analyses of the CLAS data and will be presented. Their impact on understanding of hadron structure will be discussed emphasizing the credible access to the dressed quark mass function that has been achieved for the first time by a combined analysis of the experimental results on the electromagnetic nucleon elastic and N → N* transition form factors. We will also discuss further convincing evidences for a new baryon state N′ (1720)3/2+ found in a combined analysis of charged double pion photo- and electroproduction cross sections off the protons.
Journal Article
Wide area monitoring, protection, automation, and control systems for medium voltage networks
by
Piskunov, Sergey A.
,
Mokeev, Alexey V.
,
Khromtsov, Evgeny I.
in
Automation
,
Capital costs
,
Control systems
2023
Distribution medium voltage networks have a branched structure, many power centers, longcable and overhead lines. This complicates the process of their automation, since significant capital costs for new equipment are required. New solutions based on modern technologies can help speed up this process and make it more efficient. The authors propose the use of synchronized phasor measurement technology for automating medium voltage networks. This paper considers approaches that describe the possibilities of implementing the WAMPAC principles in such networks, provides several examples where these principles apply.
Journal Article
Pattern recognition by means of linear discriminant analysis and the principal components analysis
2015
This paper is devoted to the problem of pattern recognition solved by methods of principal components and linear discriminant analysis. The efficiency of the described method is studied for a case when pictures of faces have not yet undergone preliminary processing that would have led them to the standard form (scale, centering, background clipping, brightness adjustment). When processing large sets of images in order to reduce the complexity of computation of principal components, it is proposed to use the linear condensation method and principal component synthesis. We have studied the effectiveness of the approach based on principal component analysis and linear discriminant analysis using the linear condensation method and principal component synthesis on the ORL and FERET database of face images.
Journal Article