Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
31
result(s) for
"Molinari, Alan"
Sort by:
Intrinsic negative magnetoresistance from the chiral anomaly of multifold fermions
2024
The chiral anomaly - a hallmark of chiral spin-1/2 Weyl fermions - is an imbalance between left- and right-moving particles that underpins phenomena such as particle decay and negative longitudinal magnetoresistance in Weyl semimetals. The discovery that chiral crystals can host higher-spin generalizations of Weyl quasiparticles without high-energy counterparts, known as multifold fermions, raises the fundamental question of whether the chiral anomaly is a more general phenomenon. Answering this question requires materials with chiral quasiparticles within a sizable energy window around the Fermi level that are unaffected by extrinsic effects such as current jetting. Here, we report the chiral anomaly of multifold fermions in CoSi, which features multifold bands within ~0.85 eV of the Fermi level. By excluding current jetting through the squeezing test, we measure an intrinsic, longitudinal negative magnetoresistance. We develop a semiclassical theory to show that the negative magnetoresistance originates in the chiral anomaly, despite a sizable and detrimental orbital magnetic moment contribution. A concomitant non-linear Hall effect supports the multifold-fermion origin of the magnetotransport. Our work confirms the chiral anomaly of higher-spin generalizations of Weyl fermions, currently inaccessible outside solid-state platforms.
Multifold fermions promise a solid-state platform for accessing and studying the effects of the chiral anomaly beyond Weyl fermions. Here, the authors identify multifold fermions in magnetotransport in the chiral semimetal CoSi.
Journal Article
Hybrid supercapacitors for reversible control of magnetism
2017
Electric field tuning of magnetism is one of the most intensely pursued research topics of recent times aiming at the development of new-generation low-power spintronics and microelectronics. However, a reversible magnetoelectric effect with an on/off ratio suitable for easy and precise device operation is yet to be achieved. Here we propose a novel route to robustly tune magnetism via the charging/discharging processes of hybrid supercapacitors, which involve electrostatic (electric-double-layer capacitance) and electrochemical (pseudocapacitance) doping. We use both charging mechanisms—occurring at the La
0.74
Sr
0.26
MnO
3
/ionic liquid interface to control the balance between ferromagnetic and non-ferromagnetic phases of La
1−
x
Sr
x
MnO
3
to an unprecedented extent. A magnetic modulation of up to ≈33% is reached above room temperature when applying an external potential of only about 2.0 V. Our case study intends to draw attention to new, reversible physico-chemical phenomena in the rather unexplored area of magnetoelectric supercapacitors.
The ability to electrically control magnetism could enable a new generation of low-power electronic devices. Here the authors show that charging and discharging of supercapacitors are powerful tools to achieve reversible above-room-temperature magnetoelectric effects.
Journal Article
Giant voltage-induced modification of magnetism in micron-scale ferromagnetic metals by hydrogen charging
2020
Owing to electric-field screening, the modification of magnetic properties in ferromagnetic metals by applying small voltages is restricted to a few atomic layers at the surface of metals. Bulk metallic systems usually do not exhibit any magneto-electric effect. Here, we report that the magnetic properties of micron-scale ferromagnetic metals can be modulated substantially through electrochemically-controlled insertion and extraction of hydrogen atoms in metal structure. By applying voltages of only ~ 1 V, we show that the coercivity of micrometer-sized SmCo
5
, as a bulk model material, can be reversibly adjusted by ~ 1 T, two orders of magnitudes larger than previously reported. Moreover, voltage-assisted magnetization reversal is demonstrated at room temperature. Our study opens up a way to control the magnetic properties in ferromagnetic metals beyond the electric-field screening length, paving its way towards practical use in magneto-electric actuation and voltage-assisted magnetic storage.
“Electric field control of ferromagnetism is typically limited by screening, and is restricted to the first few layers of metals. Here the authors overcome this limitation via the absorption of hydrogen into metal structure, demonstrating voltage control of magnetic properties of micron-scale SmCo5.”
Journal Article
Magnetoresistive-coupled transistor using the Weyl semimetal NbP
2024
Semiconductor transistors operate by modulating the charge carrier concentration of a channel material through an electric field coupled by a capacitor. This mechanism is constrained by the fundamental transport physics and material properties of such devices—attenuation of the electric field, and limited mobility and charge carrier density in semiconductor channels. In this work, we demonstrate a new type of transistor that operates through a different mechanism. The channel material is a Weyl semimetal, NbP, whose resistivity is modulated via a magnetic field generated by an integrated superconductor. Due to the exceptionally large electron mobility of this material, which reaches over 1,000,000 cm
2
/Vs, and the strong magnetoresistive coupling, the transistor can generate significant transconductance amplification at nanowatt levels of power. This type of device can enable new low-power amplifiers, suitable for qubit readout operation in quantum computers.
L. Rocchino et al. experimentally demonstrate a magnetic field effect transistor based on the Weyl semimetal NbP as the active channel material. A gate magnetic field is generated by current flowing in an integrated superconductor NbN. The device operation relies on the extreme magnetoresistance of the NbP.
Journal Article
Unconventional magnetoresistance and resistivity scaling in amorphous CoSi thin films
by
Schmid, Heinz
,
Zota, Cezar B.
,
Kladaric, Igor
in
639/925/357/537
,
639/925/357/995
,
Humanities and Social Sciences
2024
The resistivity scaling of Cu electrical interconnects represents a critical challenge in Si CMOS technology. As interconnect dimensions reach below 10 nm, Cu resistivity increases significantly due to surface scattering. Topological materials have been considered for application in ultra-scaled interconnects (below 5 nm), due to their topologically protected surface states that have reduced electron scattering. Recent theoretical work on the topological chiral semimetal CoSi suggests that this material could offer lower resistivity than Cu at dimensions smaller than 10 nm. Here we investigate the scaling trend of textured and amorphous CoSi thin films, deposited by molecular beam epitaxy in a thickness range between 2 and 82.5 nm. Contrary to predictions of standard resistivity models, we report here a reduction in resistivity for thin amorphous CoSi films, which is instead consistent with surface-dominated transport. Moreover, magnetotransport measurements reveal significant enhancement of the magnetoresistance in scaled films, highlighting the complex transport mechanisms present in these highly disordered films at thicknesses of a few nanometers.
Journal Article
Electron Beam Effects on Oxide Thin Films—Structure and Electrical Property Correlations
by
Chakravadhanula, VS Kiran
,
Hansen, Mirko
,
von Seggern, Falk
in
Cameras
,
Conductors
,
Electrical properties
2019
In situ transmission electron microscope (TEM) characterization techniques provide valuable information on structure–property correlations to understand the behavior of materials at the nanoscale. However, understanding nanoscale structures and their interaction with the electron beam is pivotal for the reliable interpretation of in situ/ex situ TEM studies. Here, we report that oxides commonly used in nanoelectronic applications, such as transistor gate oxides or memristive devices, are prone to electron beam induced damage that causes small structural changes even under very low dose conditions, eventually changing their electrical properties as examined via in situ measurements. In this work, silicon, titanium, and niobium oxide thin films are used for in situ TEM electrical characterization studies. The electron beam induced reduction of the oxides turns these insulators into conductors. The conductivity change is reversible by exposure to air, supporting the idea of electron beam reduction of oxides as primary damage mechanism. Through these measurements we propose a limit for the critical dose to be considered for in situ scanning electron microscopy and TEM characterization studies.
Journal Article
Proton Conduction in Grain-Boundary-Free Oxygen-Deficient BaFeO2.5+δ Thin Films
by
Benes, Alexander
,
Kruk, Robert
,
Clemens, Oliver
in
Conduction
,
Electrochemical impedance spectroscopy
,
Electrodes
2017
Reduction of the operating temperature to an intermediate temperature range between 350 °C and 600 °C is a necessity for Solid Oxide Fuel/Electrolysis Cells (SOFC/SOECs). In this respect the application of proton-conducting oxides has become a broad area of research. Materials that can conduct protons and electrons at the same time, to be used as electrode catalysts on the air electrode, are especially rare. In this article we report on the proton conduction in expitaxially grown BaFeO2.5+δ (BFO) thin films deposited by pulsed laser deposition on Nb:SrTiO3 substrates. By using Electrochemical Impedance Spectroscopy (EIS) measurements under different wet and dry atmospheres, the bulk proton conductivity of BFO (between 200 °C and 300 °C) could be estimated for the first time (3.6 × 10−6 S cm−1 at 300 °C). The influence of oxidizing measurement atmosphere and hydration revealed a strong dependence of the conductivity, most notably at temperatures above 300 °C, which is in good agreement with the hydration behavior of BaFeO2.5 reported previously.
Journal Article
Anion Doping of Ferromagnetic Thin Films of La0.74Sr0.26MnO3−δ via Topochemical Fluorination
by
Chakravadhanula, Venkata Sai Kiran
,
Kruk, Robert
,
Clemens, Oliver
in
Anion exchanging
,
Coercivity
,
Crystal growth
2018
Chemical doping via insertion of ions into the lattice of a host material is a key strategy to flexibly manipulate functionalities of materials. In this work, we present a novel case study on the topotactic insertion of fluoride ions into oxygen-deficient ferromagnetic thin films of La0.74Sr0.26MnO3−δ (LSMO) epitaxially grown onto single-crystal SrTiO3 (STO) substrates. The effect of fluorination on the film structure, composition, and magnetic properties is compared with the case of oxygen-deficient and fully-oxidized LSMO films. Although incorporation of F− anions does not significantly alter the volume of the LSMO unit cell, a strong impact on the magnetic characteristics, including a remarkable suppression of Curie temperature and saturation magnetization accompanied by an increase in magnetic coercivity, was found. The change in magnetic properties can be ascribed to the disruption of the ferromagnetic exchange interactions along Mn-anion-Mn chains driven by F− doping into the LSMO lattice. Our results indicate that F− doping is a powerful means to effectively modify the magnetic functional properties of perovskite manganites.
Journal Article
Proton Conduction in Grain-Boundary-Free Oxygen-Deficient BaFeO 2.5+δ Thin Films
2017
Reduction of the operating temperature to an intermediate temperature range between 350 °C and 600 °C is a necessity for Solid Oxide Fuel/Electrolysis Cells (SOFC/SOECs). In this respect the application of proton-conducting oxides has become a broad area of research. Materials that can conduct protons and electrons at the same time, to be used as electrode catalysts on the air electrode, are especially rare. In this article we report on the proton conduction in expitaxially grown BaFeO
(BFO) thin films deposited by pulsed laser deposition on Nb:SrTiO₃ substrates. By using Electrochemical Impedance Spectroscopy (EIS) measurements under different wet and dry atmospheres, the bulk proton conductivity of BFO (between 200 °C and 300 °C) could be estimated for the first time (3.6 × 10
S cm
at 300 °C). The influence of oxidizing measurement atmosphere and hydration revealed a strong dependence of the conductivity, most notably at temperatures above 300 °C, which is in good agreement with the hydration behavior of BaFeO
reported previously.
Journal Article
Anion Doping of Ferromagnetic Thin Films of La 0.74 Sr 0.26 MnO 3-δ via Topochemical Fluorination
Chemical doping via insertion of ions into the lattice of a host material is a key strategy to flexibly manipulate functionalities of materials. In this work, we present a novel case study on the topotactic insertion of fluoride ions into oxygen-deficient ferromagnetic thin films of La
Sr
MnO
(LSMO) epitaxially grown onto single-crystal SrTiO₃ (STO) substrates. The effect of fluorination on the film structure, composition, and magnetic properties is compared with the case of oxygen-deficient and fully-oxidized LSMO films. Although incorporation of F
anions does not significantly alter the volume of the LSMO unit cell, a strong impact on the magnetic characteristics, including a remarkable suppression of Curie temperature and saturation magnetization accompanied by an increase in magnetic coercivity, was found. The change in magnetic properties can be ascribed to the disruption of the ferromagnetic exchange interactions along Mn-anion-Mn chains driven by F
doping into the LSMO lattice. Our results indicate that F
doping is a powerful means to effectively modify the magnetic functional properties of perovskite manganites.
Journal Article