Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
17,436 result(s) for "Moller, T"
Sort by:
Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage
Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds, which have fascinating structures, compositions and properties. Complex metal hydrides are a rapidly expanding class of materials, approaching multi-functionality, in particular within the energy storage field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted how complex metal hydrides may act in an integrated setup with a fuel cell. This review focuses on the unique properties of light element complex metal hydrides mainly based on boron, nitrogen and aluminum, e.g., metal borohydrides and metal alanates. Our hope is that this review can provide new inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy.
Interleukin-6 Directly Increases Glucose Metabolism in Resting Human Skeletal Muscle
Interleukin-6 Directly Increases Glucose Metabolism in Resting Human Skeletal Muscle Stephan Glund 1 , Atul Deshmukh 1 , Yun Chau Long 1 , Theodore Moller 1 , Heikki A. Koistinen 2 , Kenneth Caidahl 3 , Juleen R. Zierath 1 and Anna Krook 1 4 1 Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden 2 Helsinki University Central Hospital and Biomedicum, Helsinki, Finland 3 Department of Molecular Medicine and Surgery, Section for Clinical Physiology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden 4 Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden Address correspondence and reprint requests to Anna Krook, Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, von Eulers väg 4, SE-171 77 Stockholm, Sweden. E-mail: anna.krook{at}ki.se Abstract Interleukin (IL)-6 is a proinflammatory cytokine shown to modify insulin sensitivity. Elevated plasma levels of IL-6 are observed in insulin-resistant states. Interestingly, plasma IL-6 levels also increase during exercise, with skeletal muscle being the predominant source. Thus, IL-6 has also been suggested to promote insulin-mediated glucose utilization. In this study, we determined the direct effects of IL-6 on glucose transport and signal transduction in human skeletal muscle. Skeletal muscle strips were prepared from vastus lateralis biopsies obtained from 22 healthy men. Muscle strips were incubated with or without IL-6 (120 ng/ml). We found that IL-6 increased glucose transport in human skeletal muscle 1.3-fold ( P < 0.05). A 30-min pre-exposure to IL-6 did not affect insulin-stimulated glucose transport. IL-6 also increased skeletal muscle glucose incorporation into glycogen, as well as glucose oxidation (1.5- and 1.3-fold, respectively; P < 0.05). IL-6 increased phosphorylation of STAT3 (signal transducer and activator of transcription 3; P < 0.05), AMP-activated protein kinase ( P = 0.063), and p38 mitogen-activated protein kinase ( P < 0.05) and reduced phosphorylation of S6 ribosomal protein ( P < 0.05). In contrast, phosphorylation of protein kinase B/Akt, AS160 (Akt substrate of 160 kDa), and GSK3α/β (glycogen synthase kinase 3α/β) as well as insulin receptor substrate 1–associated phosphatidylinositol 3-kinase activity remained unaltered. In conclusion, acute IL-6 exposure increases glucose metabolism in resting human skeletal muscle. Insulin-stimulated glucose transport and insulin signaling were unchanged after IL-6 exposure. AMPK, AMP-activated protein kinase AS160, Akt substrate of 160 kDa GSK, glycogen synthase kinase IL, interleukin IRS, insulin receptor substrate KHBB, Krebs-Henseleit bicarbonate buffer MAPK, mitogen-activated protein kinase PKB, protein kinase B STAT, signal transducer and activator of transcription Footnotes Published ahead or print at http://diabetes.diabetesjournals.org on 15 March 2007. DOI: 10.2337/db06-1733. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Accepted February 23, 2007. Received December 13, 2006. DIABETES
Long-term postoperative cognitive dysfunction in the elderly: ISPOCD1 study
Long-term postoperative cognitive dysfunction may occur in the elderly. Age may be a risk factor and hypoxaemia and arterial hypotension causative factors. We investigated these hypotheses in an international multicentre study. 1218 patients aged at least 60 years completed neuropsychological tests before and 1 week and 3 months after major non-cardiac surgery. We measured oxygen saturation by continuous pulse oximetry before surgery and throughout the day of and the first 3 nights after surgery. We recorded blood pressure every 3 min by oscillometry during the operation and every 15–30 min for the rest of that day and night. We identified postoperative cognitive dysfunction with neuropsychological tests compared with controls recruited from the UK (n=176) and the same countries as study centres (n=145). Postoperative cognitive dysfunction was present in 266 (25·8% [95% CI 23·1–28·5]) of patients 1 week after surgery and in 94 (9·9% [8·1–12·0]) 3 months after surgery, compared with 3·4% and 2·8%, respectively, of UK controls (p<0·0001 and p=0·0037, respectively). Increasing age and duration of anaesthesia, little education, a second operation, postoperative infections, and respiratory complications were risk factors for early postoperative cognitive dysfunction, but only age was a risk factor for late postoperative cognitive dysfunction. Hypoxaemia and hypotension were not significant risk factors at any time. Our findings have implications for studies of the causes of cognitive decline and, in clinical practice, for the information given to patients before surgery.
Health Effects of 12 Weeks of Team-Sport Training and Fitness Training in a Community Health Centre for Sedentary Men with Lifestyle Diseases
This study compares the effects of team-sport training, for sedentary men with lifestyle diseases, with fitness training in a pragmatic set-up in a community health centre (CHC). Thirty-two men in the fitness group (FiG) and 36 men in the team-sport group (TsG) completed the training and trained for 60–90 min, two times/week for 12–16 weeks. In FiG and TsG, mean heart rate (HR) during training was 73.2% and 74.5% of HRmax, respectively. Percentage of training time above 90%HRmax was 6 ± 9% and 10 ± 15% and the percentage of participants who spent > 10% of total training time with HR > 90%HRmax was 20% and 41%, in FiG and TsG, respectively. In FiG, total fat mass was reduced by 3.5% (P<0.01), while performance in the 6 min walking test (6MWT) increased by 11% (P<0.001). In TsG, total fat mass was reduced by 2.2% (P<0.01), while 6MWT performance improved by 5% (P<0.05). Between-group differences were observed for systolic BP (P=0.041) and mean arterial pressure (P=0.050) in favour of TsG and for sit-to-stand test (P=0.031) in favour of FiG. In conclusion, small-sided team sport is a worthy alternative to fitness training since the overall health effects are comparable, for example, improved balance and reduced fat mass. Team sport elicits high heart rates and improves cardiovascular health by reducing blood pressure, while fitness training improves sit-to-stand test performance related to activity of daily living.
Calcification intensity in planktonic Foraminifera reflects ambient conditions irrespective of environmental stress
Planktonic Foraminifera are important marine calcifiers, and the ongoing change in the oceanic carbon system makes it essential to understand the influence of environmental factors on the biomineralization of their shells. The amount of calcite deposited by planktonic Foraminifera during calcification has been hypothesized to reflect a range of environmental factors. However, it has never been assessed whether their calcification only passively responds to the conditions of the ambient seawater or whether it reflects changes in resource allocation due to physiological stress. To disentangle these two end-member scenarios, an experiment is required where the two processes are separated. A natural analogue to such an experiment occurred during the deposition of the Mediterranean sapropels, where large changes in surface water composition and stratification at the onset of the sapropel deposition were decoupled from local extinctions of planktonic Foraminifera species. We took advantage of this natural experiment and investigated the reaction of calcification intensity, expressed as mean area density (MAD), of four species of planktonic Foraminifera to changing conditions during the onset of Sapropel S5 (126–121 ka) in a sediment core from the Levantine Basin. We observed a significant relationship between MAD and surface water properties, as reflected by stable isotopes in the calcite of Foraminifera shells, but we failed to observe any reaction of calcification intensity on ecological stress during times of decreasing abundance culminating in local extinction. The reaction of calcification intensity to surface water perturbation at the onset of the sapropel was observed only in surface-dwelling species, but all species calcified more strongly prior to the sapropel deposition and less strongly within the sapropel than at similar conditions during the present-day. These results indicate that the high-salinity environment of the glacial Mediterranean Sea prior to sapropel deposition induced a~more intense calcification, whereas the freshwater injection to the surface waters associated with sapropel deposition inhibited calcification. The results are robust to changes in carbonate preservation and collectively imply that changes in normalized shell weight in planktonic Foraminifera should reflect mainly abiotic forcing.
Nitro-fatty acids are formed in response to virus infection and are potent inhibitors of STING palmitoylation and signaling
The adaptor molecule stimulator of IFN genes (STING) is central to production of type I IFNs in response to infection with DNA viruses and to presence of host DNA in the cytosol. Excessive release of type I IFNs through STING-dependent mechanisms has emerged as a central driver of several interferonopathies, including systemic lupus erythematosus (SLE), Aicardi–Goutières syndrome (AGS), and stimulator of IFN genes-associated vasculopathy with onset in infancy (SAVI). The involvement of STING in these diseases points to an unmet need for the development of agents that inhibit STING signaling. Here, we report that endogenously formed nitro-fatty acids can covalently modify STING by nitro-alkylation. These nitro-alkylations inhibit STING palmitoylation, STING signaling, and subsequently, the release of type I IFN in both human and murine cells. Furthermore, treatment with nitro-fatty acids was sufficient to inhibit production of type I IFN in fibroblasts derived from SAVI patients with a gain-of-function mutation in STING. In conclusion, we have identified nitro-fatty acids as endogenously formed inhibitors of STING signaling and propose for these lipids to be considered in the treatment of STING-dependent inflammatory diseases.
Beyond Hydrogen Storage—Metal Hydrides as Multifunctional Materials for Energy Storage and Conversion
Following the E-MRS (European Materials Research Society) fall meeting 2019, Symposium L, this Special Issue of Inorganics, entitled “Beyond Hydrogen Storage—Metal Hydrides as Multifunctional Materials for Energy Storage and Conversion”, is dedicated to the wide range of emerging energy-related inorganic hydrogen-containing materials [...]
Separate norovirus outbreaks linked to one source of imported frozen raspberries by molecular analysis, Denmark, 2010–2011
Norovirus outbreaks occur frequently in Denmark and it can be difficult to establish whether apparently independent outbreaks have the same origin. Here we report on six outbreaks linked to frozen raspberries, investigated separately over a period of 3 months. Norovirus from stools were sequence-typed; including extended sequencing of 1138 bp encompassing the hypervariable P2 region of the capsid gene. Norovirus was detected in 27 stool samples. Genotyping showed genotype GI.Pb_GI.6 (polymerase/capsid) with 100% identical sequences. Samples from five outbreaks were furthermore identical over the variable capsid P2 region. In one outbreak at a hospital canteen, frozen raspberries was associated with illness by cohort investigation (relative risk 6·1, 95% confidence interval 3·2–11). Bags of raspberries suspected to be the source were positive for genogroup I and II noroviruses, one typable virus was genotype GI.6 (capsid). These molecular investigations showed that the apparently independent outbreaks were the result of one contamination event of frozen raspberries. The contaminated raspberries originated from a single producer in Serbia and were originally not considered to belong to the same batch. The outbreaks led to consultations and mutual visits between producers, investigators and authorities. Further, Danish legislation was changed to make heat-treatment of frozen raspberries compulsory in professional catering establishments.
Assessing household lifestyle exposures from consumer purchases, the My Purchases cohort
Consumer purchase data (CPD) is a promising instrument to assess the impact of purchases on health, but is limited by the need for manual scanning, a lack of access to data from multiple retailers, and limited information on product data and health outcomes. Here we describe the My Purchases cohort, a web-app enabled, prospective collection of CPD, covering several large retail chains in Denmark, that enables linkage to health outcomes. The cohort included 459 participants as of July 03, 2023. Up to eight years of CPD have been collected, with 2,225,010 products purchased, comprising 223,440 unique products. We matched 88.5% of all products by product name or item number to one generic food database and three product databases. Combined, the databases enable analysis of key exposures such as nutrients, ingredients, or additives. We found that increasing the number of retailers that provide CPD for each consumer improved the stability of individual CPD profiles and when we compared kilojoule information from generic and specific product matches, we found a median modified relative difference of 0.23. Combined with extensive product databases and health outcomes, CPD could provide the basis for extensive investigations of how what we buy affects our health.
Characterisation of corneal fibrotic wound repair at the LASIK flap margin
Aim: To characterise temporal changes in corneal wound repair at the LASIK flap margin. Methods: 18 rabbits received monocular LASIK and were evaluated during 6 months using slit lamp and in vivo confocal microscopy. In three corneas, the exposed stroma was stained with DTAF. At various time points, corneas were processed for histology and stained for nuclei, f-actin, ED-A fibronectin, α-smooth muscle actin, TGF-β1, TGF-β2, TGF-β receptor II, and CTGF. Results: At day 1, leucocytes migrated from the conjunctival vessels into the cornea. Near the limbus, the leucocytes were organised in long chains stretching towards the flap edge. From day 4, elongated fibroblasts migrated from the periphery to align in a circumferential band (approximately 250 μm wide) next to the flap edge. The lateral extension of this stromal band was delimited by the incisional gap in the epithelial basement membrane. TGF-β1, TGF-β2, TGF-β receptor II, and CTGF were expressed in the band from day 2. Myofibroblasts were identified at week 3 and over time a 50 μm thick layer of fibrotic matrix was deposited. Concurrently, the peripheral circumferential band became narrower (width decreasing to 33% (SD 7%) at 4 months; n = 5) and showed an increased organisation with a gradual decline in reflectivity. At all time points, keratocytes within and below the flap remained quiescent and only minimal fibrosis developed at the interface. Conclusions: Fibrotic wound repair following LASIK is restricted to a narrow band peripheral to the corneal flap edge. The lateral extension of the fibrosis is sharply delimited by the incisional gap in the epithelial basement membrane. The fibrotic wound healing at the LASIK flap margin is associated with myofibroblast transformation and wound contraction and involves a TGF-β signalling pathway.