Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
294
result(s) for
"Montier, L."
Sort by:
Probing cosmic inflation with the LiteBIRD cosmic microwave background polarization survey
2023
LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. The Japan Aerospace Exploration Agency (JAXA) selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with an expected launch in the late 2020s using JAXA’s H3 rocket. LiteBIRD is planned to orbit the Sun–Earth Lagrangian point L2, where it will map the cosmic microwave background polarization over the entire sky for three years, with three telescopes in 15 frequency bands between 34 and 448 GHz, to achieve an unprecedented total sensitivity of $2.2\\, \\mu$K-arcmin, with a typical angular resolution of 0.5○ at 100 GHz. The primary scientific objective of LiteBIRD is to search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. We provide an overview of the LiteBIRD project, including scientific objectives, mission and system requirements, operation concept, spacecraft and payload module design, expected scientific outcomes, potential design extensions, and synergies with other projects.
Journal Article
LiteBIRD: A Satellite for the Studies of B-Mode Polarization and Inflation from Cosmic Background Radiation Detection
2019
LiteBIRD is a candidate satellite for a strategic large mission of JAXA. With its expected launch in the middle of the 2020s with a H3 rocket, LiteBIRD plans to map the polarization of the cosmic microwave background radiation over the full sky with unprecedented precision. The full success of LiteBIRD is to achieve
δ
r
<
0.001
, where
δ
r
is the total error on the tensor-to-scalar ratio
r
. The required angular coverage corresponds to
2
≤
ℓ
≤
200
, where
ℓ
is the multipole moment. This allows us to test well-motivated cosmic inflation models. Full-sky surveys for 3 years at a Lagrangian point L2 will be carried out for 15 frequency bands between 34 and 448 GHz with two telescopes to achieve the total sensitivity of 2.5
μ
K arcmin with a typical angular resolution of 0.5
∘
at 150 GHz. Each telescope is equipped with a half-wave plate system for polarization signal modulation and a focal plane filled with polarization-sensitive TES bolometers. A cryogenic system provides a 100 mK base temperature for the focal planes and 2 K and 5 K stages for optical components.
Journal Article
Updated Design of the CMB Polarization Experiment Satellite LiteBIRD
by
Austermann, J.
,
Hasebe, T.
,
Rambaud, D.
in
Adiabatic demagnetizing
,
Apertures
,
Big Bang theory
2020
Recent developments of transition-edge sensors (TESs), based on extensive experience in ground-based experiments, have been making the sensor techniques mature enough for their application on future satellite cosmic microwave background (CMB) polarization experiments. LiteBIRD is in the most advanced phase among such future satellites, targeting its launch in Japanese Fiscal Year 2027 (2027FY) with JAXA’s H3 rocket. It will accommodate more than 4000 TESs in focal planes of reflective low-frequency and refractive medium-and-high-frequency telescopes in order to detect a signature imprinted on the CMB by the primordial gravitational waves predicted in cosmic inflation. The total wide frequency coverage between 34 and 448 GHz enables us to extract such weak spiral polarization patterns through the precise subtraction of our Galaxy’s foreground emission by using spectral differences among CMB and foreground signals. Telescopes are cooled down to 5 K for suppressing thermal noise and contain polarization modulators with transmissive half-wave plates at individual apertures for separating sky polarization signals from artificial polarization and for mitigating from instrumental 1/
f
noise. Passive cooling by using V-grooves supports active cooling with mechanical coolers as well as adiabatic demagnetization refrigerators. Sky observations from the second Sun–Earth Lagrangian point, L2, are planned for 3 years. An international collaboration between Japan, the USA, Canada, and Europe is sharing various roles. In May 2019, the Institute of Space and Astronautical Science, JAXA, selected LiteBIRD as the strategic large mission No. 2.
Journal Article
Hi-GAL: The Herschel Infrared Galactic Plane Survey
2010
Hi-GAL, the Herschel infrared Galactic Plane Survey, is an Open Time Key Project of theHerschel Space Observatory. It will make an unbiased photometric survey of the inner Galactic plane by mapping a2°
2
°
wide strip in the longitude range∣l∣ < 60°
∣
l
∣
<
60
°
in five wavebands between 70 μm and 500 μm. The aim of Hi-GAL is to detect the earliest phases of the formation of molecular clouds and high-mass stars and to use the optimum combination ofHerschelwavelength coverage, sensitivity, mapping strategy, and speed to deliver a homogeneous census of star-forming regions and cold structures in the interstellar medium. The resulting representative samples will yield the variation of source temperature, luminosity, mass and age in a wide range of Galactic environments at all scales from massive YSOs in protoclusters to entire spiral arms, providing an evolutionary sequence for the formation of intermediate and high-mass stars. This information is essential to the formulation of a predictive global model of the role of environment and feedback in regulating the star-formation process. Such a model is vital to understanding star formation on galactic scales and in the early universe. Hi-GAL will also provide a science legacy for decades to come with incalculable potential for systematic and serendipitous science in a wide range of astronomical fields, enabling the optimum use of future major facilities such asJWSTand ALMA.
Journal Article
Sensitivity Modeling for LiteBIRD
2023
LiteBIRD
is a future satellite mission designed to observe the polarization of the cosmic microwave background radiation in order to probe the inflationary universe.
LiteBIRD
is set to observe the sky using three telescopes with transition-edge sensor bolometers. In this work we estimated the LiteBIRD instrumental sensitivity using its current design. We estimated the detector noise due to the optical loadings using physical optics and ray-tracing simulations. The noise terms associated with thermal carrier and readout noise were modeled in the detector noise calculation. We calculated the observational sensitivities over fifteen bands designed for the LiteBIRD telescopes using assumed observation time efficiency.
Journal Article
The Planck List of High-z source candidates: A laboratory for high-z star-forming galaxies
2015
The Planck satellite (Planck 2015 results. I) has provided the first FIR/submm all-sky survey with a sensitivity allowing us to identify the rarest, most luminous hig-z dusty star-forming sources on the sky. The Planck list of high-z source candidates (PHZ, PIP XXXIX subm) has been built and charcaterized over 25% of the sky by selecting the 2151 brightest red submm sources at a 5' resolution (Montier et al. 2010). Follow-up observations with Herschel/SPIRE over 228 Planck candidates have already shown that 93% of these candidates are actually overdensities of red sources (PIP XXVII 2015), while 12 Planck high-z candidates are identified as strongly lensed star-forming galaxies at redshift between 2.2 and 3.6 (Canameras et al. 2015). The first confirmed Planck proto-cluster candidate has been revealed to be a double structure at z = 1.7 and zz = 2.03 (Flores-Cacho et al. 2015). The PHZ opens a new window on these extreme star-forming systems at high-z, providing a powerful laboratory to study the mechanisms of galaxy evolution and enrichment in the frame of the large scale structure growth.
Journal Article
Polarization angle accuracy for future CMB experiments
2024
The Cosmic Microwave Background (CMB) radiation offers a unique window into the early Universe, facilitating precise examinations of fundamental cosmological theories. However, the quest for detecting B-modes in the CMB, predicted by theoretical models of inflation, faces substantial challenges in terms of calibration and foreground modeling. The COSMOCal (COsmic Survey of Millimeter wavelengths Objects for CMB experiments Calibration) project aims at enhancing the accuracy of the absolute calibration of the polarization angle ψ of current and future CMB experiments. The concept includes the build of a very well known artificial source emitting in the frequency range [20-350] GHz that would act as an absolute calibrator for several polarization facilities on Earth. A feasibility study to place the artificial source in geostationary orbit, in the far field for all the telescopes on Earth, is ongoing. In the meanwhile ongoing hardware work is dedicated to build a prototype to test the technology, the precision and the stability of the polarization recovering in the 1 mm band (220-300 GHz). High-resolution experiments as the NIKA2 camera at the IRAM 30m telescope will be deployed for such use. Once carefully calibrated (Δψ < 0.1◦) it will be used to observe astrophysical sources such as the Crab nebula, which is the best candidate in the sky for the absolute calibration of CMB experiments.
Conference Proceeding
Statistics on the relative orientation between magnetic fields and filaments hosting Planck Galactic Cold Clumps
2018
We present a statistical analysis of the relative orientation between the plane-of-sky magnetic field and the filaments associated with the Galactic Cold Clumps. We separated polarization parameters components of the filaments and their background using thin optical medium assumption, the filaments were detected using the Rolling Hough Transform algorithm and we separated the clump and the filament contributions in our maps. We found that in high column density environments the magnetic fields inside the filaments and in the background are less likely to be aligned with each other. This suggests a decoupling between the inner and background magnetic fields at some stage of filaments’ evolution. A preferential alignment between the filaments and their inferred magnetic fields is observed in the whole selection if the clumps’ contribution is subtracted. Interestingly, a bimodal distribution of relative orientation is observed between the filamentary structures of the clumps and the filaments’ magnetic field. Similar results are seen in a subsample of nearby filaments. The relative orientation clearly shows a transition from parallel to no preferential and perpendicular alignment depending on the volume densities of both clumps and filaments. Our results confirm a strong interplay between the magnetic field and filamentary structures during their formation and evolutionary process.
Journal Article
Measuring the CMB primordial B-modes with Bolometric Interferometry
2024
The Q&U Bolometric Interferometer for Cosmology (QL’BIC) is the first bolometric interferometer designed to measure the primordial B-mode polarization of the Cosmic Microwave Background (CMB). Bolometric interferometry is a novel technique that combines the sensitivity of bolometric detectors with the control of systematic effects that is typical of interferometry, both key features in the quest for the faint signal of the primordial B-modes. A unique feature is the so-called “spectral imaging”, i.e., the ability to recover the sky signal in several sub-bands within the physical band during data analysis. This feature provides an in-band spectral resolution of ∆v/v ~ 0.04 that is unattainable by a traditional imager. This is a key tool for controlling the Galactic foregrounds contamination. In this paper, we describe the principles of bolometric interferometry, the current status of the QU BIC experiment and future prospects.
Conference Proceeding
The QUBIC instrument for CMB polarization measurements
2020
Measurements of cosmic microwave background (CMB) polarization may reveal the presence of a background of gravitational waves produced during cosmic inflation, providing thus a test of inflationary models. The Q&U Bolometric Interferometer for Cosmology (QUBIC) is an experiment designed to measure the CMB polarization. It is based on the novel concept of bolometric interferometry, which combines the sensitivity of bolometric detectors with the properties of beam synthesis and control of calibration offered by interferometers. To modulate and extract the input polarized signal of the CMB, QUBIC exploits Stokes polarimetry based on a rotating half-wave plate (HWP). In this work, we illustrate the design of the QUBIC instrument, focusing on the polarization modulation system, and we present preliminary results of beam calibrations and the performance of the HWP rotator at 300 K.
Journal Article