Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
99 result(s) for "Moon, Hyung Ryong"
Sort by:
(2E,5E)-2,5-Bis(3-hydroxy-4-methoxybenzylidene) cyclopentanone Exerts Anti-Melanogenesis and Anti-Wrinkle Activities in B16F10 Melanoma and Hs27 Fibroblast Cells
Ultraviolet (UV) radiation exposure is the primary cause of extrinsic skin aging, which results in skin hyperpigmentation and wrinkling. In this study, we investigated the whitening effect of (2E,5E)-2,5-bis(3-hydroxy-4-methoxybenzylidene)cyclopentanone (BHCP) on B16F10 melanoma and its anti-wrinkle activity on Hs27 fibroblasts cells. BHCP was found to potently inhibit tyrosinase, with 50% inhibition concentration (IC50) values of 1.10 µM and 8.18 µM for monophenolase (l-tyrosine) and diphenolase (l-DOPA), and the enzyme kinetics study revealed that BHCP is a competitive-type tyrosinase inhibitor. Furthermore, BHCP significantly inhibited melanin content and cellular tyrosinase activity, and downregulated the levels of microphthalmia-associated transcription factor (MITF), phosphorylated levels of cAMP response element-binding (CREB) protein, and tyrosinase in α-melanocyte stimulating hormone (α-MSH)-induced B16F10 melanoma cells. Moreover, BHCP inhibited the phosphorylation of p65 and expression of matrix metalloproteinases (MMP-1, MMP-9, MMP-12, and MMP-13) in Hs27 fibroblasts stimulated with UV radiation. Therefore, our results demonstrate that BHCP may be a good candidate for the development of therapeutic agents for diseases associated with hyperpigmentation and wrinkling.
Colon-targeted delivery of cyclosporine A using dual-functional Eudragit ® FS30D/PLGA nanoparticles ameliorates murine experimental colitis
Colon-targeted oral nanoparticles (NPs) have emerged as an ideal, safe, and effective therapy for ulcerative colitis (UC) owing to their ability to selectively accumulate in inflamed colonic mucosa. Cyclosporine A (CSA), an immunosuppressive agent, has long been used as rescue therapy in severe steroid-refractory UC. In this study, we developed CSA-loaded dual-functional polymeric NPs composed of Eudragit FS30D as a pH-sensitive polymer for targeted delivery to the inflamed colon, and poly(lactic-co-glycolic acid) (PLGA) as a sustained-release polymer. CSA-loaded Eudragit FS30D nanoparticles (ENPs), PLGA nanoparticles (PNPs), and Eudragit FS30D/PLGA nanoparticles (E/PNPs) were prepared using the oil-in-water emulsion method. Scanning electron microscope images and zeta size data showed successful preparation of CSA-loaded NPs. PNPs exhibited a burst drug release of >60% at pH 1.2 (stomach pH) in 0.5 h, which can lead to unwanted systemic absorption and side effects. ENPs effectively inhibited the burst drug release at pH 1.2 and 6.8 (proximal small intestine pH); however, nearly 100% of the CSA in ENPs was released rapidly at pH 7.4 (ileum-colon pH) owing to complete NP dissolution. In contrast to single-functional PNPs and ENPs, the dual-functional E/PNPs minimized burst drug release (only 18%) at pH 1.2 and 6.8, and generated a sustained release at pH 7.4 thereafter. Importantly, in distribution studies in the gastrointestinal tracts of mice, E/PNPs significantly improved CSA distribution to the colon compared with PNPs or ENPs. In a mouse model of colitis, E/PNP treatment improved weight loss and colon length, and decreased rectal bleeding, spleen weight, histological scoring, myeloperoxidase activity, macrophage infiltration, and expression of proinflammatory cytokines compared with PNPs or ENPs. Overall, this work confirms the benefits of CSA-loaded E/PNPs for efficiently delivering CSA to the colon, suggesting their potential for UC therapy.
Inhibitory Effect of mTOR Activator MHY1485 on Autophagy: Suppression of Lysosomal Fusion
Autophagy is a major degradative process responsible for the disposal of cytoplasmic proteins and dysfunctional organelles via the lysosomal pathway. During the autophagic process, cells form double-membraned vesicles called autophagosomes that sequester disposable materials in the cytoplasm and finally fuse with lysosomes. In the present study, we investigated the inhibition of autophagy by a synthesized compound, MHY1485, in a culture system by using Ac2F rat hepatocytes. Autophagic flux was measured to evaluate the autophagic activity. Autophagosomes were visualized in Ac2F cells transfected with AdGFP-LC3 by live-cell confocal microscopy. In addition, activity of mTOR, a major regulatory protein of autophagy, was assessed by western blot and docking simulation using AutoDock 4.2. In the result, treatment with MHY1485 suppressed the basal autophagic flux, and this inhibitory effect was clearly confirmed in cells under starvation, a strong physiological inducer of autophagy. The levels of p62 and beclin-1 did not show significant change after treatment with MHY1485. Decreased co-localization of autophagosomes and lysosomes in confocal microscopic images revealed the inhibitory effect of MHY1485 on lysosomal fusion during starvation-induced autophagy. These effects of MHY1485 led to the accumulation of LC3II and enlargement of the autophagosomes in a dose- and time-dependent manner. Furthermore, MHY1485 induced mTOR activation and correspondingly showed a higher docking score than PP242, a well-known ATP-competitive mTOR inhibitor, in docking simulation. In conclusion, MHY1485 has an inhibitory effect on the autophagic process by inhibition of fusion between autophagosomes and lysosomes leading to the accumulation of LC3II protein and enlarged autophagosomes. MHY1485 also induces mTOR activity, providing a possibility for another regulatory mechanism of autophagy by the MHY compound. The significance of this study is the finding of a novel inhibitor of autophagy with an mTOR activating effect.
Design and Synthesis of (Z)-2-(Benzylamino)-5-benzylidenethiazol-4(5H)-one Derivatives as Tyrosinase Inhibitors and Their Anti-Melanogenic and Antioxidant Effects
In this study, (Z)-2-(benzylamino)-5-benzylidenethiazol-4(5H)-one (BABT) derivatives were designed as tyrosinase inhibitors based on the structure of MHY2081, using a simplified approach. Of the 14 BABT derivatives synthesized, two derivatives ((Z)-2-(benzylamino)-5-(3-hydroxy-4-methoxybenzylidene)thiazol-4(5H)-one [7] and (Z)-2-(benzylamino)-5-(2,4-dihydroxybenzylidene)thiazol-4(5H)-one [8]) showed more potent mushroom tyrosinase inhibitory activities than kojic acid, regardless of the substrate used; in particular, compound 8 was 106-fold more potent than kojic acid when l-tyrosine was used as the substrate. Analysis of Lineweaver–Burk plots for 7 and 8 indicated that they were competitive inhibitors, which was confirmed via in silico docking. In experiments using B16F10 cells, 8 exerted a greater ability to inhibit melanin production than kojic acid, and it inhibited cellular tyrosinase activity in a concentration-dependent manner, indicating that the anti-melanogenic effect of 8 is attributable to its ability to inhibit tyrosinase. In addition, 8 exhibited strong antioxidant activity to scavenge 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radicals and peroxynitrite and inhibited the expression of melanogenesis-associated proteins (tyrosinase and microphthalmia-associated transcription factor). These results suggest that BABT derivative 8 is a promising candidate for the treatment of hyperpigmentation-related diseases, owing to its inhibition of melanogenesis-associated protein expression, direct tyrosinase inhibition, and antioxidant activity.
Design, Synthesis, and Anti-Tyrosinase, Anti-Melanogenic, and Antioxidant Activities of Novel (Z)-3-Benzyl-5-Benzylidene-2-Thioxothiazolidin-4-One Analogs
To discover novel anti-melanogenic compounds with tyrosinase inhibitory activity, (Z)-3-benzyl-5-benzylidene-2-thioxothiazolidin-4-one ((Z)-BBTT) analogs 1–12, designed based on the hybrid structure of a β-phenyl-α,β-unsaturated carbonyl motif and a 3-benzyl-2-thioxothiazolidin-4-one scaffold, were synthesized as novel tyrosinase inhibitors. Of the 12 analogs, 2 (6 and 8) showed mushroom tyrosinase inhibitory activity similar to that of kojic acid, a representative tyrosinase inhibitor, and 3 analogs (1–3) exhibited mushroom tyrosinase inhibitory activity that was more potent than that of kojic acid. In particular, analog 3 revealed highly potent inhibition with an IC50 value of 90 nM, which was 214 times lower than that of kojic acid (IC50 value = 19.22 μM). A kinetic study using mushroom tyrosinase and analogs 1–3 and 6 demonstrated that these analogs were competitive inhibitors, which was further supported by in silico studies. Analogs 1 and 3 have strong anti-melanogenic potency in B16F10 mammalian cells owing to their anti-tyrosinase activity without perceptible cytotoxicity in melanoma cells (B16F10) and the main epidermal cells (HaCaT). Moreover, analog 3 exhibited strong antioxidant capacity, scavenging reactive oxygen species, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) cation radical, and 2,2-diphenyl-1-picrylhydrazyl radical, partially contributing to its anti-melanogenic effect. (Z)-BBTT analogs, including analog 3, may be promising candidates for inhibiting melanin production.
Design, Synthesis, and Antioxidant and Anti-Tyrosinase Activities of (Z)-5-Benzylidene-2-(naphthalen-1-ylamino)thiazol-4(5H)-one Analogs: In Vitro and In Vivo Insights
Fifteen compounds (1–15) constructed on a hybrid structure combining a β-phenyl-α,β-unsaturated carbonyl template and a 2-aminothiazol-4(5H)-one scaffold were designed and synthesized as potential novel anti-tyrosinase substances. Two compounds (10 and 15) showed more potent inhibition against mushroom tyrosinase than kojic acid, and the inhibitory activity of 10 (IC50 value: 1.60 μM) was 11 times stronger than that of kojic acid. Lineweaver–Burk plots indicated that these two compounds were competitive inhibitors that bound to the mushroom tyrosinase active site, which was supported by in silico experiments. Compound 10 was an anti-tyrosinase and anti-melanogenic substance in B16F10 cells and was more potent than kojic acid, without cytotoxicity. Compound 15 exhibited the most potent effect on zebrafish larval depigmentation and showed a depigmentation effect comparable to kojic acid, even at a concentration 200 times lower. Compounds 8 and 10 exhibited strong antioxidant capacities, scavenging 2,2-diphenyl-1-picrylhydrazyl, (2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid)+ radicals, and reactive oxygen species. Hybrid compounds 10 and 15 are potential therapeutic agents for skin hyperpigmentation disorders.
Design and Synthesis of Novel 6-(Substituted phenyl)-1,3dioxolo4′,5′:4,5benzo1,2-dthiazole Compounds as Tyrosinase Inhibitors: In Vitro and In Vivo Insights
The 2,4-dihydroxyphenyl group is commonly present in the chemical structures of potent tyrosinase inhibitors. Based on this observation, a series of 6-(substituted phenyl)-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-d]thiazole compounds 1–13 were designed and synthesized as potential tyrosinase inhibitors. Among these, compounds 5 and 9 strongly inhibited mushroom tyrosinase activity. Particularly, compound 9 exhibited nanomolar IC50 values regardless of the substrate used, whereas kojic acid yielded IC50 values of 15.99–26.18 μM. Kinetic studies on mushroom tyrosinase revealed that compounds 5 and 9 competitively inhibited tyrosinase activity, findings further corroborated by in silico docking analysis. In B16F10 cell-based experiments, both compounds effectively inhibited the cellular tyrosinase activity and melanin formation. These inhibitory effects were confirmed through in situ cellular tyrosinase activity assays. Compound 9 exhibited strong antioxidant activity by scavenging radicals, suggesting that its ability to reduce melanin production may be attributed to a combination of its antioxidant and tyrosinase inhibitory properties. Additionally, five compounds, including compound 5, demonstrated effective depigmentation activity in vivo in zebrafish embryos, and their depigmentation efficacy was similar to that of kojic acid, even at concentrations hundreds of times lower. These findings suggest that 6-(substituted phenyl)-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-d]thiazole compounds may be promising anti-melanogenic agents.
A new SIRT1 inhibitor, MHY2245, induces autophagy and inhibits energy metabolism via PKM2/mTOR pathway in human ovarian cancer cells
Ovarian cancer is a common gynecological cancer that is found worldwide. Class III histone deacetylase (HDAC) inhibitors, a new class of anticancer agents, induce autophagy in various human cancer cells. The aim of the present study was to investigate the antitumor activity of MHY2245, a new synthetic SIRT inhibitor, on human ovarian cancer cells. We found that MHY2245 exhibited potent cytotoxicity to SKOV3 cells in a time- and concentration-dependent manner. The cytotoxicity of MHY2245 (IC =0.32 µM) was higher than that of doxorubicin (DOX, IC =1.38µM) against SKOV3 cells. MHY2245 significantly inhibited SIRT1 enzyme activity, reduced the expression of SIRT1, increased cell cycle arrest at G /M phase, and induced apoptotic cell death in SKOV3 cells via expression of cytochrome c, cleaved-PARP, cleaved caspase-3, and Bax. This might be associated with blocking of the pyruvate kinase M2 (PKM2)/mTOR pathway. MHY2245 also inhibited tumor growth and reduced tumor size when SKOV3 cells were transplanted into nude mice. Our results indicate that MHY2245 exerts antitumor activity against ovarian cancer cells by blocking the PKM2/mTOR pathway. We suggest that MHY2245 is a promising anticancer agent that disrupts ovarian cancer cell metabolism.
A Potent Tyrosinase Inhibitor, (E)-3-(2,4-Dihydroxyphenyl)-1-(thiophen-2-yl)prop-2-en-1-one, with Anti-Melanogenesis Properties in α-MSH and IBMX-Induced B16F10 Melanoma Cells
In this study, we designed and synthesized eight thiophene chalcone derivatives (1a–h) as tyrosinase inhibitors and evaluated their mushroom tyrosinase inhibitory activities. Of these eight compounds, (E)-3-(2,4-dihydroxyphenyl)-1-(thiophen-2-yl)prop-2-en-1-one (1c) showed strong competitive inhibition activity against mushroom tyrosinase with IC50 values of 0.013 μM for tyrosine hydroxylase and 0.93 μM for dopa oxidase. In addition, we used enzyme kinetics study and docking program to further evaluate the inhibitory mechanism of 1c toward tyrosinase. As an underlying mechanism of 1c mediated anti-melanogenic effect, we investigated the inhibitory activity against melanin contents and cellular tyrosinase in B16F10 melanoma cells. As the results, the enzyme kinetics and docking results supports that 1c highly interacts with tyrosinase residues in the tyrosinase active site and it can directly inhibit tyrosinase as competitive inhibitor. In addition, 1c exhibited dose-dependent inhibitory effects in melanin contents and intracellular tyrosinase on α-MSH and IBMX-induced B16F10 cells. Overall, our results suggested that 1c might be considered potent tyrosinase inhibitor for use in the development of therapeutic agents for diseases associated with hyperpigment disorders.
Investigation of the Efficacy of Benzylidene-3-methyl-2-thioxothiazolidin-4-one Analogs with Antioxidant Activities on the Inhibition of Mushroom and Mammal Tyrosinases
Based on the fact that substances with a β-phenyl-α,β-unsaturated carbonyl (PUSC) motif confer strong tyrosinase inhibitory activity, benzylidene-3-methyl-2-thioxothiazolidin-4-one (BMTTZD) analogs 1–8 were prepared as potential tyrosinase inhibitors. Four analogs (1–3 and 5) inhibited mushroom tyrosinase strongly. Especially, analog 3 showed an inhibitory effect that was 220 and 22 times more powerful than kojic acid in the presence of l-tyrosine and l-dopa, respectively. A kinetic study utilizing mushroom tyrosinase showed that analogs 1 and 3 competitively inhibited tyrosinase, whereas analogs 2 and 5 inhibited tyrosinase in a mixed manner. A docking simulation study indicated that analogs 2 and 5 could bind to both the tyrosinase active and allosteric sites with high binding affinities. In cell-based experiments using B16F10 cells, analogs 1, 3, and 5 effectively inhibited melanin production; their anti-melanogenic effects were attributed to their ability to inhibit intracellular tyrosinase activity. Moreover, analogs 1, 3, and 5 inhibited in situ B16F10 cellular tyrosinase activity. In three antioxidant experiments, analogs 2 and 3 exhibited strong antioxidant efficacy, similar to that of the positive controls. These results suggest that the BMTTZD analogs are promising tyrosinase inhibitors for the treatment of hyperpigmentation-related disorders.