Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
78 result(s) for "Moore, Tara L."
Sort by:
T Cells Actively Infiltrate the White Matter of the Aging Monkey Brain in Relation to Increased Microglial Reactivity and Cognitive Decline
Normal aging is characterized by declines in processing speed, learning, memory, and executive function even in the absence of neurodegenerative diseases such as Alzheimer's Disease (AD). In normal aging monkeys and humans, neuronal loss does not account for cognitive impairment. Instead, loss of white matter volume and an accumulation of myelin sheath pathology begins in middle age and is associated with cognitive decline. It is unknown what causes this myelin pathology, but it likely involves increased neuroinflammation in white matter and failures in oligodendrocyte function (maturation and repair). In frontal white matter tracts vulnerable to myelin damage, microglia become chronically reactive and secrete harmful pro-inflammatory cytokines. Despite being in a phagocytic state, these microglia are ineffective at phagocytosing accruing myelin debris, which directly inhibits myelin sheath repair. Here, we asked whether reported age-related increases in pro-inflammatory markers were accompanied by an adaptive immune response involving T cells. We quantified T cells with immunohistochemistry in the brains of 34 cognitively characterized monkeys and found an age-related increase in perivascular T cells that surround CNS vasculature. We found a surprising age-related increase in T cells that infiltrate the white matter parenchyma. In the cingulum bundle the percentage of these parenchymal T cells increased with age relative to those in the perivascular space. In contrast, infiltrating T cells were rarely found in surrounding gray matter regions. We assessed whether T cell infiltration correlated with fibrinogen extravasation from the vasculature as a measure of BBB leakiness and found no correlation, suggesting that T cell infiltration is not a result of passive extravasation. Importantly, the density of T cells in the cingulum bundle correlated with microglial reactivity and with cognitive impairment. This is the first demonstration that T cell infiltration of white matter is associated with cognitive decline in the normal aging monkey.
Mesenchymal-derived extracellular vesicles enhance microglia-mediated synapse remodeling after cortical injury in aging Rhesus monkeys
Understanding the microglial neuro-immune interactions in the primate brain is vital to developing therapeutics for cortical injury, such as stroke or traumatic brain injury. Our previous work showed that mesenchymal-derived extracellular vesicles (MSC-EVs) enhanced motor recovery in aged rhesus monkeys following injury of primary motor cortex (M1), by promoting homeostatic ramified microglia, reducing injury-related neuronal hyperexcitability, and enhancing synaptic plasticity in perilesional cortices. A focal lesion was induced via surgical ablation of pial blood vessels over lying the cortical hand representation of M1 of aged female rhesus monkeys, that received intravenous infusions of either vehicle (veh) or EVs 24 h and again 14 days post-injury. The current study used this same cohort to address how these injury- and recovery-associated changes relate to structural and molecular interactions between microglia and neuronal synapses. Using multi-labeling immunohistochemistry, high-resolution microscopy, and gene expression analysis, we quantified co-expression of synaptic markers (VGLUTs, GLURs, VGAT, GABARs), microglia markers (Iba1, P2RY12), and C1q, a complement pathway protein for microglia-mediated synapse phagocytosis, in perilesional M1 and premotor cortices (PMC). We compared this lesion cohort to age-matched non-lesion controls (ctr). Our findings revealed a lesion-related loss of excitatory synapses in perilesional areas, which was ameliorated by EV treatment. Further, we found region-dependent effects of EVs on microglia and C1q expression. In perilesional M1, EV treatment and enhanced functional recovery were associated with increased expression of C1q + hypertrophic microglia, which are thought to have a role in debris-clearance and anti-inflammatory functions. In PMC, EV treatment was associated with decreased C1q + synaptic tagging and microglia–spine contacts. Our results suggest that EV treatment may enhance synaptic plasticity via clearance of acute damage in perilesional M1, and thereby preventing chronic inflammation and excessive synaptic loss in PMC. These mechanisms may act to preserve synaptic cortical motor networks and a balanced normative M1/PMC synaptic function to support functional recovery after injury.
Cerebellar dentate nucleus lesions in monkey reveal both a motor-cognitive dichotomy and within-cognition dichotomy of dorsal vs ventral stream processing
The dysmetria of thought theory holds that the cerebellum is an integral node in the distributed neural circuits subserving cognition. We tested this theory in four rhesus monkeys with bilateral lesions in cerebellar dentate nuclei (DN), targeting ventral sectors linked with cerebral association cortices engaged in cognitive processing. Lesion localization was confirmed by MRI and histology. DN animals and controls were assessed for motor dexterity (Kuypers’ Task), attention, three-choice discrimination, recognition memory (Delayed Non-Matching to Sample task [DNMS]), working memory (Delayed Recognition Span Task [DRST]) and executive function (Conceptual Set Shifting Task [CSST]). Performance by the DN animals was not significantly different than controls on the Kuypers’ task and DNMS, but as a group they were impaired on DRST and CSST. DN monkeys achieved shorter spans on DRST. Their responses on CSST were more perseverative, and larger lesions produced greater deficits. This study provides the first empirical support for anatomical and functional MRI evidence of a motor-cognitive dichotomy in the cerebellar dentate nucleus. It highlights a within-cognition dichotomy in which cerebellum modulates dorsal stream cognitive functions (spatial awareness; dynamic actions of where and how) characterized by executive functions including working memory but is not engaged in ventral stream cognitive processes (static actions of object identification) exemplified by recognition memory.
Dysregulated C1q and CD47 in the aging monkey brain: association with myelin damage, microglia reactivity, and cognitive decline
Normal aging, though lacking widespread neurodegeneration, is nevertheless characterized by cognitive impairment in learning, memory, and executive function. The aged brain is spared from neuron loss, but white matter is lost and damage to myelin sheaths accumulates. This myelin damage is strongly associated with cognitive impairment. Although the cause of the myelin damage is not known, microglia dysregulation is a likely contributor. Immunologic proteins interact with microglial receptors to modulate microglia-mediated phagocytosis, which mediates myelin damage clearance and turn-over. Two such proteins, “eat me” signal C1q and “don’t eat me” signal CD47, act in opposition with microglia. Both C1q and CD47 have been implicated in Multiple Sclerosis, a demyelinating disease, but whether they play a role in age-related myelin pathology is currently unknown. The present study investigates C1q and CD47 in relation to age-related myelin degeneration using multilabel immunofluorescence, RNAscope, and confocal microscopy in the cingulum bundle of male and female rhesus monkeys across the lifespan. Our findings showed significant age-related elevation in C1q localized to myelin basic protein, and this increase is associated with more severe cognitive impairment. In contrast, CD47 localization to myelin decreased in middle age and oligodendrocyte expression of CD47 RNA decreased with age. Lastly, microglia reactivity increased with age in association with the changes in C1q and CD47. Together, these results suggest disruption in the balance of “eat me” and “don’t eat me” signals during normal aging, biasing microglia toward increased reactivity and phagocytosis of myelin, resulting in cognitive deficits.
Reduction of inflammatory biomarkers underlies extracellular vesicle mediated functional recovery in an aged monkey model of cortical injury
Cortical injury results in inflammation and cell death that can cause disability, especially in the aged population. Previous studies from our group have demonstrated the efficacy of bone marrow mesenchymal stromal cell derived extracellular vesicles (MSC-EVs) as a therapeutic to mitigate damage and enhance recovery in our aged monkey model of cortical injury. In the first 3–5 weeks following injury to the hand representation of the primary motor cortex, monkeys treated intravenously with MSC-EVs exhibited a more rapid and complete recovery of fine motor grasp compared to vehicle-treated monkeys. However, whether recovery and treatment are associated with temporal changes in peripheral or central biomarkers of inflammation remain unknown. The current study used the highly sensitive Olink ® Proximity Extension Assay to assess inflammatory protein biomarkers in blood and CSF across a 6-week recovery period in aged female monkeys. MSC-EV treatment promoted a sustained downregulation of pro-inflammatory proteins in plasma across the entire recovery period, and a transient downregulation of anti-inflammatory proteins at 2 weeks post-injury. Functional annotation and pathway analyses showed that the plasma proteins downregulated with MSC-EV treatment were associated with the suppression of pro-inflammatory signaling. Further, immunolabeling of perilesional brain tissue harvested 6-weeks post injury showed an increase in homeostatic microglial phenotypes with MSC-EV treatment. Downregulation of inflammatory markers in plasma and brain tissue were positively correlated with improved functional recovery. These data suggest that MSC-EVs facilitate recovery of function after brain injury, in part, via sustained suppression of both peripheral and central pro-inflammatory signaling across recovery.
Human-to-monkey transfer learning identifies the frontal white matter as a key determinant for predicting monkey brain age
The application of artificial intelligence (AI) to summarize a whole-brain magnetic resonance image (MRI) into an effective “brain age” metric can provide a holistic, individualized, and objective view of how the brain interacts with various factors (e.g., genetics and lifestyle) during aging. Brain age predictions using deep learning (DL) have been widely used to quantify the developmental status of human brains, but their wider application to serve biomedical purposes is under criticism for requiring large samples and complicated interpretability. Animal models, i.e., rhesus monkeys, have offered a unique lens to understand the human brain - being a species in which aging patterns are similar, for which environmental and lifestyle factors are more readily controlled. However, applying DL methods in animal models suffers from data insufficiency as the availability of animal brain MRIs is limited compared to many thousands of human MRIs. We showed that transfer learning can mitigate the sample size problem, where transferring the pre-trained AI models from 8,859 human brain MRIs improved monkey brain age estimation accuracy and stability. The highest accuracy and stability occurred when transferring the 3D ResNet [mean absolute error (MAE) = 1.83 years] and the 2D global-local transformer (MAE = 1.92 years) models. Our models identified the frontal white matter as the most important feature for monkey brain age predictions, which is consistent with previous histological findings. This first DL-based, anatomically interpretable, and adaptive brain age estimator could broaden the application of AI techniques to various animal or disease samples and widen opportunities for research in non-human primate brains across the lifespan.
The Effects of a Novel Non-catechol Dopamine Partial Agonist on Working Memory in the Aged Rhesus Monkey
Aged-related declines in cognition, especially working memory and executive function, begin in middle-age and these abilities are known to be mediated by the prefrontal cortex (PFC) and more specifically the dopamine (DA) system within the PFC. In both humans and monkeys, there is significant evidence that the PFC is the first cortical region to change with age and the PFC appears to be particularly vulnerable to age-related loss of dopamine (DA). Therefore, the DA system is a strong candidate for therapeutic intervention to slow or reverse age related declines in cognition. In the present study, we administered a novel selective, potent, non-catechol DA D1 R agonist PF-6294 (Pfizer, Inc.) to aged female rhesus monkeys and assessed their performance on two benchmark tasks of working memory – the Delayed Non-match to Sample Task (DNMS) and Delayed Recognition Span Task (DRST). The DNMS task was administered first with the standard 10 s delay and then with 5 min delays, with and without distractors. The DRST was administered each day with four trials with unique sequences and one trial of a repeated sequence to assess evidence learning and retention. Overall, there was no significant effect of drug on performance on any aspect of the DNMS task. In contrast, we demonstrated that a middle range dose of PF-6294 significantly increased memory span on the DRST on the first and last days of testing and by the last day of testing the increased memory span was driven by the performance on the repeated trials.
A perspective from the National Eye Institute Extracellular Vesicle Workshop: Gaps, needs, and opportunities for studies of extracellular vesicles in vision research
With an evolving understanding and new discoveries in extracellular vesicle (EV) biology and their implications in health and disease, the significant diagnostic and therapeutic potential of EVs for vision research has gained recognition. In 2021, the National Eye Institute (NEI) unveiled its Strategic Plan titled ‘Vision for the Future (2021–2025),’ which listed EV research as a priority within the domain of Regenerative Medicine, a pivotal area outlined in the Plan. In alignment with this prioritization, NEI organized a workshop inviting twenty experts from within and beyond the visual system. The workshop aimed to review current knowledge in EV research and explore gaps, needs and opportunities for EV research in the eye, including EV biology and applications of EVs in diagnosis, therapy and prognosis within the visual system. This perspective encapsulates the workshop's deliberations, highlighting the current landscape and potential implications of EV research in advancing eye health and addressing visual diseases.
Sex differences in recovery of motor function in a rhesus monkey model of cortical injury
Background Stroke disproportionately affects men and women, with women over 65 years experiencing increased severity of impairment and higher mortality rates than men. Human studies have explored risk factors that contribute to these differences, but additional research is needed to investigate how sex differences affect functional recovery and hence the severity of impairment. In the present study, we used our rhesus monkey model of cortical injury and fine motor impairment to compare sex differences in the rate and degree of motor recovery following this injury. Methods Aged male and female rhesus monkeys were trained on a task of fine motor function of the hand before undergoing surgery to produce a cortical lesion limited to the hand area representation of the primary motor cortex. Post-operative testing began two weeks after the surgery and continued for 12 weeks. All trials were video recorded and latency to retrieve a reward was quantitatively measured to assess the trajectory of post-operative response latency and grasp pattern compared to pre-operative levels. Results Postmortem analysis showed no differences in lesion volume between male and female monkeys. However, female monkeys returned to their pre-operative latency and grasp patterns significantly faster than males. Conclusions These findings demonstrate the need for additional studies to further investigate the role of estrogens and other sex hormones that may differentially affect recovery outcomes in the primate brain. Highlights Aged female and male rhesus monkeys were trained on a fine motor task before undergoing surgery to produce a lesion to the hand area representation of the primary motor cortex Aged female monkeys returned to pre-operative latency and grasp patterns faster than aged males after cortical injury
Extracellular Vesicle Treatment Alleviates Neurodevelopmental and Neurodegenerative Pathology in Cortical Spheroid Model of Down Syndrome
Down syndrome (DS), or trisomy 21, is manifested in a variety of anatomical and cellular abnormalities resulting in intellectual deficits and early onset of Alzheimer’s disease (AD) with no effective treatments available to alleviate the pathologies associated with the disorder. The therapeutic potential of extracellular vesicles (EVs) has emerged recently in relation to various neurological conditions. We have previously demonstrated the therapeutic efficacy of mesenchymal stromal cell-derived EVs (MSC-EVs) in cellular and functional recovery in a rhesus monkey model of cortical injury. In the current study, we evaluated the therapeutic effect of MSC-EVs in a cortical spheroid (CS) model of DS generated from patient-derived induced pluripotent stem cells (iPSCs). Compared to euploid controls, trisomic CS display smaller size, deficient neurogenesis, and AD-related pathological features, such as enhanced cell death and depositions of amyloid beta (Aβ) and hyperphosphorylated tau (p-tau). EV-treated trisomic CS demonstrated preserved size, partial rescue in the production of neurons, significantly decreased levels of Aβ and p-tau, and a reduction in the extent of cell death as compared to the untreated trisomic CS. Together, these results show the efficacy of EVs in mitigating DS and AD-related cellular phenotypes and pathological depositions in human CS.