Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
64 result(s) for "Moraleda, Jose M."
Sort by:
Optimization of Mesenchymal Stromal Cell (MSC) Manufacturing Processes for a Better Therapeutic Outcome
MSCs products as well as their derived extracellular vesicles, are currently being explored as advanced biologics in cell-based therapies with high expectations for their clinical use in the next few years. In recent years, various strategies designed for improving the therapeutic potential of mesenchymal stromal cells (MSCs), including pre-conditioning for enhanced cytokine production, improved cell homing and strengthening of immunomodulatory properties, have been developed but the manufacture and handling of these cells for their use as advanced therapy medicinal products (ATMPs) remains insufficiently studied, and available data are mainly related to non-industrial processes. In the present article, we will review this topic, analyzing current information on the specific regulations, the selection of living donors as well as MSCs from different sources (bone marrow, adipose tissue, umbilical cord, etc.), in-process quality controls for ensuring cell efficiency and safety during all stages of the manual and automatic (bioreactors) manufacturing process, including cryopreservation, the use of cell banks, handling medicines, transport systems of ATMPs, among other related aspects, according to European and US legislation. Our aim is to provide a guide for a better, homogeneous manufacturing of therapeutic cellular products with special reference to MSCs.
Silk fibroin scaffolds seeded with Wharton’s jelly mesenchymal stem cells enhance re-epithelialization and reduce formation of scar tissue after cutaneous wound healing
Background The treatment of extensive and/or chronic skin wounds is a widespread and costly public health problem. Mesenchymal stem cells (MSCs) have been proposed as a potential cell therapy for inducing wound healing in different clinical settings, alone or in combination with biosynthetic scaffolds. Among them, silk fibroin (SF) seeded with MSCs has been shown to have increased efficacy in skin wound healing experimental models. Methods In this report, we investigated the wound healing effects of electrospun SF scaffolds cellularized with human Wharton’s jelly MSCs (Wj-MSCs-SF) using a murine excisional wound splinting model. Results Immunohistopathological examination after transplant confirmed the presence of infiltrated human fibroblast-like CD90-positive cells in the dermis of the Wj-MSCs-SF-treated group, yielding neoangiogenesis, decreased inflammatory infiltrate and myofibroblast proliferation, less collagen matrix production, and complete epidermal regeneration. Conclusions These findings indicate that Wj-MSCs transplanted in the wound bed on a silk fibroin scaffold contribute to the generation of a well-organized and vascularized granulation tissue, enhance reepithelization of the wound, and reduce the formation of fibrotic scar tissue, highlighting the potential therapeutic effects of Wj-MSC-based tissue engineering approaches to non-healing wound treatment.
The Current Status of Mesenchymal Stromal Cells: Controversies, Unresolved Issues and Some Promising Solutions to Improve Their Therapeutic Efficacy
Mesenchymal stromal cells (MSCs) currently constitute the most frequently used cell type in advanced therapies with different purposes, most of which are related with inflammatory processes. Although the therapeutic efficacy of these cells has been clearly demonstrated in different disease animal models and in numerous human phase I/II clinical trials, only very few phase III trials using MSCs have demonstrated the expected potential therapeutic benefit. On the other hand, diverse controversial issues on the biology and clinical applications of MSCs, including their specific phenotype, the requirement of an inflammatory environment to induce immunosuppression, the relevance of the cell dose and their administration schedule, the cell delivery route (intravascular/systemic vs. local cell delivery), and the selected cell product (i.e., use of autologous vs. allogeneic MSCs, freshly cultured vs. frozen and thawed MSCs, MSCs vs. MSC-derived extracellular vesicles, etc.) persist. In the current review article, we have addressed these issues with special emphasis in the new approaches to improve the properties and functional capabilities of MSCs after distinct cell bioengineering strategies.
Defibrotide inhibits donor leucocyte‐endothelial interactions and protects against acute graft‐versus‐host disease
Allogeneic hematopoietic stem cell transplantation (allo‐HCT) is an effective therapy for the treatment of high‐risk haematological malignant disorders and other life‐threatening haematological and genetic diseases. Acute graft‐versus‐host disease (aGvHD) remains the most frequent cause of non‐relapse mortality following allo‐HCT and limits its extensive clinical application. Current pharmacologic agents used for prophylaxis and treatment of aGvHD are not uniformly successful and have serious secondary side effects. Therefore, more effective and safe prophylaxis and therapy for aGvHD are an unmet clinical need. Defibrotide is a multi‐target drug successfully employed for prophylaxis and treatment of veno‐occlusive disease/sinusoidal obstruction syndrome. Recent preliminary clinical data have suggested some efficacy of defibrotide in the prevention of aGvHD after allo‐HCT. Using a fully MHC‐mismatched murine model of allo‐HCT, we report here that defibrotide, either in prophylaxis or treatment, is effective in preventing T cell and neutrophil infiltration and aGvHD‐associated tissue injury, thus reducing aGvHD incidence and severity, with significantly improved survival after allo‐HCT. Moreover, we performed in vitro mechanistic studies using human cells revealing that defibrotide inhibits leucocyte‐endothelial interactions by down‐regulating expression of key endothelial adhesion molecules involved in leucocyte trafficking. Together, these findings provide evidence that defibrotide may represent an effective and safe clinical alternative for both prophylaxis and treatment of aGvHD after allo‐HCT, paving the way for new therapeutic approaches.
New Insights Into Pathophysiology of β-Thalassemia
β-thalassemia is a disease caused by genetic mutations including a nucleotide change, small insertions or deletions in the β-globin gene, or in rare cases, gross deletions into the β-globin gene. These mutations affect globin-chain subunits within the hemoglobin tetramer what induces an imbalance in the α/β-globin chain ratio, with an excess of free α-globin chains that triggers the most important pathogenic events of the disease: ineffective erythropoiesis, chronic anemia/chronic hypoxia, compensatory hemopoietic expansion and iron overload. Based on advances in our knowledge of the pathophysiology of β-thalassemia, in recent years, emerging therapies and clinical trials are being conducted and are classified into three major categories based on the different approach features of the underlying pathophysiology: correction of the α/β-globin disregulation; improving iron overload and reverse ineffective erythropoiesis. However, pathways such as the dysregulation of transcriptional factors, activation of the inflammasome, or approach to mechanisms of bone mineral loss, remain unexplored for future therapeutic targets. In this review, we update the main pathophysiological pathways involved in β-thalassemia, focusing on the development of new therapies directed at new therapeutic targets.
Bioengineered Mesenchymal Stem/Stromal Cells in Anti-Cancer Therapy: Current Trends and Future Prospects
Mesenchymal stem/stromal cells (MSCs) are one of the most widely used cell types in advanced therapies due to their therapeutic potential in the regulation of tissue repair and homeostasis, and immune modulation. However, their use in cancer therapy is controversial: they can inhibit cancer cell proliferation, but also potentially promote tumour growth by supporting angiogenesis, modulation of the immune milieu and increasing cancer stem cell invasiveness. This opposite behaviour highlights the need for careful and nuanced use of MSCs in cancer treatment. To optimize their anti-cancer effects, diverse strategies have bioengineered MSCs to enhance their tumour targeting and therapeutic properties or to deliver anti-cancer drugs. In this review, we highlight the advanced uses of MSCs in cancer therapy, particularly as carriers of targeted treatments due to their natural tumour-homing capabilities. We also discuss the potential of MSC-derived extracellular vesicles to improve the efficiency of drug or molecule delivery to cancer cells. Ongoing clinical trials are evaluating the therapeutic potential of these cells and setting the stage for future advances in MSC-based cancer treatment. It is critical to identify the broad and potent applications of bioengineered MSCs in solid tumour targeting and anti-cancer agent delivery to position them as effective therapeutics in the evolving field of cancer therapy.
Optimizing cryopreservation conditions for use of fucosylated human mesenchymal stromal cells in anti-inflammatory/immunomodulatory therapeutics
Mesenchymal stem/stromal cells (MSCs) are being increasingly used in cell-based therapies due to their broad anti-inflammatory and immunomodulatory properties. Intravascularly-administered MSCs do not efficiently migrate to sites of inflammation/immunopathology, but this shortfall has been overcome by cell surface enzymatic fucosylation to engender expression of the potent E-selectin ligand HCELL. In applications of cell-based therapies, cryopreservation enables stability in both storage and transport of the produced cells from the manufacturing facility to the point of care. However, it has been reported that cryopreservation and thawing dampens their immunomodulatory/anti-inflammatory activity even after a reactivation/reconditioning step. To address this issue, we employed a variety of methods to cryopreserve and thaw fucosylated human MSCs derived from either bone marrow or adipose tissue sources. We then evaluated their immunosuppressive properties, cell viability, morphology, proliferation kinetics, immunophenotype, senescence, and osteogenic and adipogenic differentiation. Our studies provide new insights into the immunobiology of cryopreserved and thawed MSCs and offer a readily applicable approach to optimize the use of fucosylated human allogeneic MSCs as immunomodulatory/anti-inflammatory therapeutics.
Rett Syndrome Mutant Neural Cells Lacks MeCP2 Immunoreactive Bands
Dysfunctions of MeCP2 protein lead to various neurological disorders such as Rett syndrome and Autism. The exact functions of MeCP2 protein is still far from clear. At a molecular level, there exist contradictory data. MeCP2 protein is considered a single immunoreactive band around 75 kDa by western-blot analysis but several reports have revealed the existence of multiple MeCP2 immunoreactive bands above and below the level where MeCP2 is expected. MeCP2 immunoreactive bands have been interpreted in different ways. Some researchers suggest that multiple MeCP2 immunoreactive bands are unidentified proteins that cross-react with the MeCP2 antibody or degradation product of MeCP2, while others suggest that MeCP2 post-transcriptional processing generates multiple molecular forms linked to cell signaling, but so far they have not been properly analyzed in relation to Rett syndrome experimental models. The purpose of this study is to advance understanding of multiple MeCP2 immunoreactive bands in control neural cells and p.T158M MeCP2e1 mutant cells. We have generated stable wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Application of N- and C- terminal MeCP2 antibodies, and also, RFP antibody minimized concerns about nonspecific cross-reactivity, since they react with the same antigen at different epitopes. We report the existence of multiple MeCP2 immunoreactive bands in control cells, stable wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Also, MeCP2 immunoreactive bands differences were found between wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Slower migration phosphorylated band around 70kDa disappeared in p.T158M MeCP2e1-RFP mutant expressing cells. These data suggest that threonine 158 could represent an important phosphorylation site potentially involved in protein function. Our results clearly indicate that MeCP2 antibodies have no cross-reactivity with similar epitopes on others proteins, supporting the idea that MeCP2 may exist in multiple different molecular forms and that molecular pattern variations derived from altered post-transcriptional processing may underlay Rett syndrome physiophatology.
Enforced mesenchymal stem cell tissue colonization counteracts immunopathology
Mesenchymal stem/stromal cells (MSCs) are distributed within all tissues of the body. Though best known for generating connective tissue and bone, these cells also display immunoregulatory properties. A greater understanding of MSC cell biology is urgently needed because culture-expanded MSCs are increasingly being used in treatment of inflammatory conditions, especially life-threatening immune diseases. While studies in vitro provide abundant evidence of their immunomodulatory capacity, it is unknown whether tissue colonization of MSCs is critical to their ability to dampen/counteract evolving immunopathology in vivo. To address this question, we employed a murine model of fulminant immune-mediated inflammation, acute graft-versus-host disease (aGvHD), provoked by donor splenocyte-enriched full MHC-mismatched hematopoietic stem cell transplant. aGvHD induced the expression of E-selectin within lesional endothelial beds, and tissue-specific recruitment of systemically administered host-derived MSCs was achieved by enforced expression of HCELL, a CD44 glycoform that is a potent E-selectin ligand. Compared to mice receiving HCELL− MSCs, recipients of HCELL+ MSCs had increased MSC intercalation within aGvHD-affected site(s), decreased leukocyte infiltrates, lower systemic inflammatory cytokine levels, superior tissue preservation, and markedly improved survival. Mechanistic studies reveal that ligation of HCELL/CD44 on the MSC surface markedly potentiates MSC immunomodulatory activity by inducing MSC secretion of a variety of potent immunoregulatory molecules, including IL-10. These findings indicate that MSCs counteract immunopathology in situ, and highlight a role for CD44 engagement in unleashing MSC immunobiologic properties that maintain/establish tissue immunohomeostasis.
Glioblastoma ablates pericytes antitumor immune function through aberrant up-regulation of chaperone-mediated autophagy
The contractile perivascular cells, pericytes (PC), are hijacked by glioblastoma (GB) to facilitate tumor progression. PC’s protumorigenic function requires direct interaction with tumor cells and contributes to the establishment of immunotolerance to tumor growth. Cancer cells up-regulate their own chaperone-mediated autophagy (CMA), a process that delivers selective cytosolic proteins to lysosomes for degradation, with pro-oncogenic effects. However, the possible impact that cancer cells may have on CMA of surrounding host cells has not been explored. We analyzed the contribution of CMA to the GB-induced changes in PC biology. We have found that CMA is markedly up-regulated in PC in response to the oxidative burst that follows PC–GB cell interaction. Genetic manipulations to block the GB-induced up-regulation of CMA in PC allows them to maintain their proinflammatory function and to support the induction of effective antitumor T cell responses required for GB clearance. GB-induced up-regulation of CMA activity in PC is essential for their effective interaction with GB cells that help tumor growth. We show that CMA inhibition in PC promotes GB cell death and the release of high immunogenic levels of granulocyte-macrophage colony stimulating factor (GM-CSF), through deregulation of the expression of cell-to-cell interaction proteins and protein secretion. A GB mouse model grafted in vivo with CMA-defective PC shows reduced GB proliferation and effective immune response compared to mice grafted with control PC. Our findings identify abnormal up-regulation of CMA as a mechanism by which GB cells elicit the immunosuppressive function of PC and stabilize GB–PC interactions necessary for tumor cell survival.