Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
101 result(s) for "Morales, Marisela"
Sort by:
Volitional social interaction prevents drug addiction in rat models
Addiction treatment has not been appreciably improved by neuroscientific research. One problem is that mechanistic studies using rodent models do not incorporate volitional social factors, which play a critical role in human addiction. Here, using rats, we introduce an operant model of choice between drugs and social interaction. Independent of sex, drug class, drug dose, training conditions, abstinence duration, social housing, or addiction score in Diagnostic & Statistical Manual IV-based and intermittent access models, operant social reward prevented drug self-administration. This protection was lessened by delay or punishment of the social reward but neither measure was correlated with the addiction score. Social-choice-induced abstinence also prevented incubation of methamphetamine craving. This protective effect was associated with activation of central amygdala PKCδ-expressing inhibitory neurons and inhibition of anterior insular cortex activity. These findings highlight the need for incorporating social factors into neuroscience-based addiction research and support the wider implantation of socially based addiction treatments.
VTA glutamatergic inputs to nucleus accumbens drive aversion by acting on GABAergic interneurons
The authors show that glutamatergic neurons, which are intermixed with dopaminergic neurons in the ventral tegmental area, establish multiple excitatory synapses on parvalbumin GABAergic interneurons in the nucleus accumbens. Activation of this glutamatergic mesoaccumbens pathway induces the release of GABA onto medium spiny neurons and drives aversion. The ventral tegmental area (VTA) is best known for its dopamine neurons, some of which project to nucleus accumbens (nAcc). However, the VTA also has glutamatergic neurons that project to nAcc. The function of the mesoaccumbens glutamatergic pathway remains unknown. Here we report that nAcc photoactivation of mesoaccumbens glutamatergic fibers promotes aversion. Although we found that these mesoaccumbens glutamatergic fibers lack GABA, the aversion evoked by their photoactivation depended on glutamate- and GABA-receptor signaling, and not on dopamine-receptor signaling. We found that mesoaccumbens glutamatergic fibers established multiple asymmetric synapses on single parvalbumin GABAergic interneurons and that nAcc photoactivation of these fibers drove AMPA-mediated cellular firing of parvalbumin GABAergic interneurons. These parvalbumin GABAergic interneurons in turn inhibited nAcc medium spiny output neurons, thereby controlling inhibitory neurotransmission in nAcc. To our knowledge, the mesoaccumbens glutamatergic pathway is the first glutamatergic input to nAcc shown to mediate aversion instead of reward, and the first pathway shown to establish excitatory synapses on nAcc parvalbumin GABAergic interneurons.
Distinct sub-second dopamine signaling in dorsolateral striatum measured by a genetically-encoded fluorescent sensor
The development of genetically encoded dopamine sensors such as dLight has provided a new approach to measuring slow and fast dopamine dynamics both in brain slices and in vivo, possibly enabling dopamine measurements in areas like the dorsolateral striatum (DLS) where previously such recordings with fast-scan cyclic voltammetry (FSCV) were difficult. To test this, we first evaluated dLight photometry in mouse brain slices with simultaneous FSCV and found that both techniques yielded comparable results, but notable differences in responses to dopamine transporter inhibitors, including cocaine. We then used in vivo fiber photometry with dLight in mice to examine responses to cocaine in DLS. We also compared dopamine responses during Pavlovian conditioning across the striatum. We show that dopamine increases were readily detectable in DLS and describe transient dopamine kinetics, as well as slowly developing signals during conditioning. Overall, our findings indicate that dLight photometry is well suited to measuring dopamine dynamics in DLS. Genetically encoded dopamine sensors have emerged as an alternative to voltammetry for in vivo dopamine measurements. Here, the authors compare these two methods directly, and document dopamine responses during Pavlovian conditioning across the striatum.
Dopaminergic and glutamatergic microdomains in a subset of rodent mesoaccumbens axons
Dopamine axons projecting from the ventral tegmental area to the nucleus accumbens (mesoaccumbens axons) play a role in motivation. Tthe authors show that there are distinct microdomains releasing either dopamine or glutamate within individual mesoaccumbens axons in rats and mice. Mesoaccumbens fibers are thought to co-release dopamine and glutamate. However, the mechanism is unclear, and co-release by mesoaccumbens fibers has not been documented. Using electron microcopy, we found that some mesoaccumbens fibers have vesicular transporters for dopamine (VMAT2) in axon segments that are continuous with axon terminals that lack VMAT2, but contain vesicular glutamate transporters type 2 (VGluT2). In vivo overexpression of VMAT2 did not change the segregation of the two vesicular types, suggesting the existence of highly regulated mechanisms for maintaining this segregation. The mesoaccumbens axon terminals containing VGluT2 vesicles make asymmetric synapses, commonly associated with excitatory signaling. Using optogenetics, we found that dopamine and glutamate were released from the same mesoaccumbens fibers. These findings reveal a complex type of signaling by mesoaccumbens fibers in which dopamine and glutamate can be released from the same axons, but are not normally released at the same site or from the same synaptic vesicles.
A diencephalic circuit in rats for opioid analgesia but not positive reinforcement
Mu opioid receptor (MOR) agonists are potent analgesics, but also cause sedation, respiratory depression, and addiction risk. The epithalamic lateral habenula (LHb) signals aversive states including pain, and here we found that it is a potent site for MOR-agonist analgesia-like responses in rats. Importantly, LHb MOR activation is not reinforcing in the absence of noxious input. The LHb receives excitatory inputs from multiple sites including the ventral tegmental area, lateral hypothalamus, entopeduncular nucleus, and the lateral preoptic area of the hypothalamus (LPO). Here we report that LHb-projecting glutamatergic LPO neurons are excited by noxious stimulation and are preferentially inhibited by MOR selective agonists. Critically, optogenetic stimulation of LHb-projecting LPO neurons produces an aversive state that is relieved by LHb MOR activation, and optogenetic inhibition of LHb-projecting LPO neurons relieves the aversiveness of ongoing pain. Opioids are potent analgesics but also have addiction risk. Here a lateral preoptic area to lateral habenula connection is identified by which opioids relieve ongoing pain but do not produce reward in animals that do not have ongoing pain.
Circuit specificity in the inhibitory architecture of the VTA regulates cocaine-induced behavior
Inputs to midbrain dopamine neurons control rewarding and drug-related behaviors. The authors found that nucleus accumbens inputs and local GABA neurons inhibit dopamine neurons through distinct populations of GABA receptors. Furthermore, genetic deletion of GABA B receptors from dopamine neurons selectively increased behavioral sensitivity to cocaine. Afferent inputs to the ventral tegmental area (VTA) control reward-related behaviors through regulation of dopamine neuron activity. The nucleus accumbens (NAc) provides one of the most prominent projections to the VTA; however, recent studies have provided conflicting evidence regarding the function of these inhibitory inputs. Using optogenetics, cell-specific ablation, whole cell patch-clamp and immuno-electron microscopy, we found that NAc inputs synapsed directly onto dopamine neurons, preferentially activating GABA B receptors. GABAergic inputs from the NAc and local VTA GABA neurons were differentially modulated and activated separate receptor populations in dopamine neurons. Genetic deletion of GABA B receptors from dopamine neurons in adult mice did not affect general or morphine-induced locomotor activity, but markedly increased cocaine-induced locomotion. Collectively, our findings demonstrate notable selectivity in the inhibitory architecture of the VTA and suggest that long-range GABAergic inputs to dopamine neurons fundamentally regulate behavioral responses to cocaine.
A glutamatergic reward input from the dorsal raphe to ventral tegmental area dopamine neurons
Electrical stimulation of the dorsal raphe (DR) and ventral tegmental area (VTA) activates the fibres of the same reward pathway but the phenotype of this pathway and the direction of the reward-relevant fibres have not been determined. Here we report rewarding effects following activation of a DR-originating pathway consisting of vesicular glutamate transporter 3 (VGluT3) containing neurons that form asymmetric synapses onto VTA dopamine neurons that project to nucleus accumbens. Optogenetic VTA activation of this projection elicits AMPA-mediated synaptic excitatory currents in VTA mesoaccumbens dopaminergic neurons and causes dopamine release in nucleus accumbens. Activation also reinforces instrumental behaviour and establishes conditioned place preferences. These findings indicate that the DR–VGluT3 pathway to VTA utilizes glutamate as a neurotransmitter and is a substrate linking the DR—one of the most sensitive reward sites in the brain—to VTA dopaminergic neurons. Glutamatergic neurons project from the dorsal raphe to the ventral tegmental area, two brain areas strongly associated with addictive behaviour, however the functional significance of this connection remains unclear. Qi et al. show that optogenetic activation of this pathway conveys reward in mice.
Identification of Rat Ventral Tegmental Area GABAergic Neurons
The canonical two neuron model of opioid reward posits that mu opioid receptor (MOR) activation produces reward by disinhibiting midbrain ventral tegmental area (VTA) dopamine neurons through inhibition of local GABAergic interneurons. Although indirect evidence supports the neural circuit postulated by this model, its validity has been called into question by growing evidence for VTA neuronal heterogeneity and the recent demonstration that MOR agonists inhibit GABAergic terminals in the VTA arising from extrinsic neurons. In addition, VTA MOR reward can be dopamine-independent. To directly test the assumption that MOR activation directly inhibits local GABAergic neurons, we investigated the properties of rat VTA GABA neurons directly identified with either immunocytochemistry for GABA or GAD65/67, or in situ hybridization for GAD65/67 mRNA. Utilizing co-labeling with an antibody for the neural marker NeuN and in situ hybridization against GAD65/67, we found that 23±3% of VTA neurons are GAD65/67(+). In contrast to the assumptions of the two neuron model, VTA GABAergic neurons are heterogeneous, both physiologically and pharmacologically. Importantly, only 7/13 confirmed VTA GABA neurons were inhibited by the MOR selective agonist DAMGO. Interestingly, all confirmed VTA GABA neurons were insensitive to the GABA(B) receptor agonist baclofen (0/6 inhibited), while all confirmed dopamine neurons were inhibited (19/19). The heterogeneity of opioid responses we found in VTA GABAergic neurons, and the fact that GABA terminals arising from neurons outside the VTA are inhibited by MOR agonists, make further studies essential to determine the local circuit mechanisms underlying VTA MOR reward.
Lateral hypothalamic glutamatergic inputs to VTA glutamatergic neurons mediate prioritization of innate defensive behavior over feeding
The lateral hypothalamus (LH) is involved in feeding behavior and defense responses by interacting with different brain structures, including the Ventral Tegmental Area (VTA). Emerging evidence indicates that LH-glutamatergic neurons infrequently synapse on VTA-dopamine neurons but preferentially establish multiple synapses on VTA-glutamatergic neurons. Here, we demonstrated that LH-glutamatergic inputs to VTA promoted active avoidance, long-term aversion, and escape attempts. By testing feeding in the presence of a predator, we observed that ongoing feeding was decreased, and that this predator-induced decrease in feeding was abolished by photoinhibition of the LH-glutamatergic inputs to VTA. By VTA specific neuronal ablation, we established that predator-induced decreases in feeding were mediated by VTA-glutamatergic neurons but not by dopamine or GABA neurons. Thus, we provided evidence for an unanticipated neuronal circuitry between LH-glutamatergic inputs to VTA-glutamatergic neurons that plays a role in prioritizing escape, and in the switch from feeding to escape in mice. VTA glutamatergic neurons mediate innate defensive behaviors. Here, authors show that suppression of feeding induced by escape responses to threats is mediated by VTA glutamatergic neurons regulated by lateral hypothalamic glutamatergic neurons.
VTA monosynaptic connections by local glutamate and GABA neurons and their distinct roles in behavior
The ventral tegmental area (VTA) dopamine neurons have been implicated in diverse behaviors. These VTA dopamine neurons are intermixed with neurons that co-transmit glutamate and GABA (VTA glutamate-GABA ), transmit glutamate (VTA glutamate-only ) or GABA (VTA GABA-only ). In dual recombinase vglut2-Cre/vgat-Flp transgenic mice, we combined quantitative ultrastructural analysis with 3D correlative light and electron microscopy and found that VTA glutamate-only neurons frequently established synapses on VTA dopamine and VTA glutamate-only neurons, and that VTA GABA-only neurons mostly synapsed on VTA dopamine neurons. By selective targeting of VTA subpopulations of neurons, we demonstrated that activation of VTA glutamate-only neurons is rewarding and decreases feeding behavior, while activation of VTA GABA-only neurons is aversive. We found that activation of VTA glutamate-only or VTA GABA-only neurons negatively affected learning to obtain food reward, and impaired cue-induced reinstatement of food-seeking behavior. Collectively, we demonstrated the monosynaptic properties of an unexpected VTA microcircuitry in which distinct neuronal components integrate information related to reward, aversion, and feeding. While the connectivity of VTA dopamine neurons is well studied, less is known about the connectivity of VTA glutamate and GABA neurons. Here, authors show that these neurons form local circuits to modulate reward, aversion, feeding and locomotion.