Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
178 result(s) for "Moreno, Fermín"
Sort by:
Defects of Nutrient Signaling and Autophagy in Neurodegeneration
Schematic Representation Highlighting the Mechanisms of Nutrient Sensing and Autophagy Under Physiological Conditions. Neurons are post-mitotic cells that allocate huge amounts of energy to the synthesis of new organelles and molecules, neurotransmission and to the maintenance of redox homeostasis. In neurons, autophagy is not only crucial to ensure organelle renewal but it is also essential to balance nutritional needs through the mobilization of internal energy stores. A delicate crosstalk between the pathways that sense nutritional status of the cell and the autophagic processes to recycle organelles and macronutrients is fundamental to guarantee the proper functioning of the neuron in times of energy scarcity. This review provides a detailed overview of the pathways and processes involved in the balance of cellular energy mediated by autophagy, which when defective, precipitate the neurodegenerative cascade of Parkinson’s disease, frontotemporal dementia, amyotrophic lateral sclerosis or Alzheimer’s disease.
Progranulin Deficiency Induces Mitochondrial Dysfunction in Frontotemporal Lobar Degeneration with TDP-43 Inclusions
Loss-of-function (LOF) mutations in GRN gene, which encodes progranulin (PGRN), cause frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP). FTLD-TDP is one of the most common forms of early onset dementia, but its pathogenesis is not fully understood. Mitochondrial dysfunction has been associated with several neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS). Here, we have investigated whether mitochondrial alterations could also contribute to the pathogenesis of PGRN deficiency-associated FTLD-TDP. Our results showed that PGRN deficiency induced mitochondrial depolarization, increased ROS production and lowered ATP levels in GRN KD SH-SY5Y neuroblastoma cells. Interestingly, lymphoblasts from FTLD-TDP patients carrying a LOF mutation in the GRN gene (c.709-1G > A) also demonstrated mitochondrial depolarization and lower ATP levels. Such mitochondrial damage increased mitochondrial fission to remove dysfunctional mitochondria by mitophagy. Interestingly, PGRN-deficient cells showed elevated mitochondrial mass together with autophagy dysfunction, implying that PGRN deficiency induced the accumulation of damaged mitochondria by blocking its degradation in the lysosomes. Importantly, the treatment with two brain-penetrant CK-1δ inhibitors (IGS-2.7 and IGS-3.27), known for preventing the phosphorylation and cytosolic accumulation of TDP-43, rescued mitochondrial function in PGRN-deficient cells. Taken together, these results suggest that mitochondrial function is impaired in FTLD-TDP associated with LOF GRN mutations and that the TDP-43 pathology linked to PGRN deficiency might be a key mechanism contributing to such mitochondrial dysfunction. Furthermore, our results point to the use of drugs targeting TDP-43 pathology as a promising therapeutic strategy for restoring mitochondrial function in FTLD-TDP and other TDP-43-related diseases.
Targeting TDP-43 phosphorylation by Casein Kinase-1δ inhibitors: a novel strategy for the treatment of frontotemporal dementia
Background Mutations in the progranulin gene ( GRN ) are the most common cause of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP). TDP-43 pathology is characterized by the hyperphosphorylation of the protein at Serine 409/410 residues. Casein kinase-1δ (CK-1δ) was reported to phosphorylate TDP-43 directly. Previous works from our laboratory described the presence of CDK6/pRb-dependent cell cycle alterations, and cytosolic accumulation of TDP-43 protein in lymphoblast from FTLD-TDP patients carriers of a loss-of function mutation in GRN gene (c.709-1G > A). In this work, we have investigated the effects of two brain penetrant CK-1δ inhibitors (IGS-2.7 and IGS-3.27) designed and synthetized in our laboratory on cell proliferation, TDP-43 phosphorylation and subcellular localization, as well as their effects on the known nuclear TDP-43 function repressing the expression of CDK6. Results We report here that both CK-1δ inhibitors (IGS-2.7 and IGS-3.27) normalized the proliferative activity of PGRN-deficient lymphoblasts by preventing the phosphorylation of TDP-43 fragments, its nucleo-cytosol translocation and the overactivation of the CDK6/pRb cascade. Moreover, ours results show neuroprotective effects of CK-1δ inhibitors in a neuronal cell model of induced TDP-43 phosphorylation. Conclusions Our results suggest that modulating CK-1δ activity could be considered a novel therapeutic approach for the treatment of FTLD-TDP and other TDP-43 proteinopathies.
Progranulin deficiency induces overactivation of WNT5A expression via TNF-α/NF-κB pathway in peripheral cells from frontotemporal dementia-linked granulin mutation carriers
Loss-of-function progranulin gene (GRN) mutations have been identified as the major cause of frontotemporal lobar degeneration with transactive response (TAR) DNA-binding protein 43 (TDP-43) pathology (frontotemporal lobar degeneration [FTLD]-TDP); however, little is known about the association between progranulin (PGRN) deficiency and neuronal loss in individuals with FTLD-TDP. Previously we reported enhanced proliferative activity associated with the activation of WNT5A/CDK6/pRb signalling in PGRN-deficient cells. The objective of this work was to elucidate the association between PGRN deficiency, WNT5A signalling and cell proliferation in immortalized lymphoblasts from carriers of the c.709-1G > A GRN mutation (asymptomatic and FTLD-TDP). We assessed cell proliferation in carriers of the c.709-1G > A GRN gene mutation and controls without GRN mutation and without sign of neurologic degeneration by cell counting or using an MTT assay. We used a luciferase assay to measure the nuclear factor-κ (NF-κ) activity. We evaluated messenger RNA levels using quantitative real-time polymerase chain reaction and protein levels by immunoblotting. Co-immunoprecipitation was used to analyze the interaction between PGRN and its receptors. We enrolled 19 carriers of the GRN gene mutation and 10 controls in this study. The PGRN-deficient cells showed increased expression of WNT5A due to NF-κB signalling overactivation. We observed a competition between PGRN and tumour necrosis factor-α (TNF-α) for binding both TNF receptors (TNFR) I and II. Blocking NF-κB signalling using wedelolactone or specific antibodies against TNFRs inhibited WNT5A overexpression and proliferation of PGRN-deficient cells. Conversely, the activation of NF-κB signalling by TNF-α increased WNT5A-dependent proliferation of control cells. All cell lines were derived from individuals harboring the same splicing GRN mutation. Nevertheless, most of the known GRN mutations lead to haploinsufficiency of the protein. Our results revealed an important role of NF-κB signalling in PGRN-associated FTLD-TDP and confirm that PGRN can bind to TNF-α receptors regulating the expression of WNT5A, suggesting novel targets for treatment of FTLD-TDP linked to GRN mutations.
The unexpected co-occurrence of GRN and MAPT p.A152T in Basque families: Clinical and pathological characteristics
The co-occurrence of the c.709-1G>A GRN mutation and the p.A152T MAPT variant has been identified in 18 Basque families affected by frontotemporal dementia (FTD). We aimed to investigate the influence of the p.A152T MAPT variant on the clinical and neuropathological features of these Basque GRN families. We compared clinical characteristics of 14 patients who carried the c.709-1G>A GRN mutation (GRN+/A152T-) with 21 patients who carried both the c.709-1G>A GRN mutation and the p.A152T MAPT variant (GRN+/A152T+). Neuropsychological data (n = 17) and plasma progranulin levels (n = 23) were compared between groups, and 7 subjects underwent neuropathological studies. We genotyped six short tandem repeat markers in the two largest families. By the analysis of linkage disequilibrium decay in the haplotype block we estimated the time when the first ancestor to carry both genetic variants emerged. GRN+/A152T+ and GRN+/A152T- patients shared similar clinical and neuropsychological features and plasma progranulin levels. All were diagnosed with an FTD disorder, including behavioral variant FTD or non fluent / agrammatic variant primary progressive aphasia, and shared a similar pattern of neuropsychological deficits, predominantly in executive function, memory, and language. All seven participants with available brain autopsies (6 GRN+/A152T+, 1 GRN+/A152T-) showed frontotemporal lobar degeneration with TDP-43 inclusions (type A classification), which is characteristic of GRN carriers. Additionally, all seven showed mild to moderate tau inclusion burden: five cases lacked β-amyloid pathology and two cases had Alzheimer's pathology. The co-occurrence of both genes within one individual is recent, with the birth of the first GRN+/A152T+ individual estimated to be within the last 50 generations (95% probability). In our sample, the p.A152T MAPT variant does not appear to show a discernible influence on the clinical phenotype of GRN carriers. Whether p.A152T confers a greater than expected propensity for tau pathology in these GRN carriers remains an open question.
Analysis of sex differences in the clinical presentation, management and prognosis of infective endocarditis in Spain
IntroductionSex-dependent differences of infective endocarditis (IE) have been reported. Women suffer from IE less frequently than men and tend to present more severe manifestations. Our objective was to analyse the sex-based differences of IE in the clinical presentation, treatment, and prognosis.Material and methodsWe analysed the sex differences in the clinical presentation, modality of treatment and prognosis of IE in a national-level multicentric cohort between 2008 and 2018. All data were prospectively recorded by the GAMES cohort (Spanish Collaboration on Endocarditis).ResultsA total of 3451 patients were included, of whom 1105 were women (32.0%). Women were older than men (mean age, 68.4 vs 64.5). The most frequently affected valves were the aortic valve in men (50.6%) and mitral valve in women (48.7%). Staphylococcus aureus aetiology was more frequent in women (30.1% vs 23.1%; p<0.001).Surgery was performed in 38.3% of women and 50% of men. After propensity score (PS) matching for age and estimated surgical risk (European System for Cardiac Operative Risk Evaluation II (EuroSCORE II)), the analysis of the matched cohorts revealed that women were less likely to undergo surgery (OR 0.74; 95% CI 0.59 to 0.91; p=0.05).The observed overall in-hospital mortality was 32.8% in women and 25.7% in men (OR for the mortality of female sex 1.41; 95% CI 1.21 to 1.65; p<0.001). This statistical difference was not modified after adjusting for all possible confounders.ConclusionsFemale sex was an independent factor related to mortality after adjusting for confounders. In addition, women were less frequently referred for surgical treatment.
Inactivation of CDK/pRb Pathway Normalizes Survival Pattern of Lymphoblasts Expressing the FTLD-Progranulin Mutation c.709-1G>A
Mutations in the progranulin (PGRN) gene, leading to haploinsufficiency, cause familial frontotemporal lobar degeneration (FTLD-TDP), although the pathogenic mechanism of PGRN deficit is largely unknown. Allelic loss of PGRN was previously shown to increase the activity of cyclin-dependent kinase (CDK) CDK6/pRb pathway in lymphoblasts expressing the c.709-1G>A PGRN mutation. Since members of the CDK family appear to play a role in neurodegenerative disorders and in apoptotic death of neurons subjected to various insults, we investigated the role of CDK6/pRb in cell survival/death mechanisms following serum deprivation. We performed a comparative study of cell viability after serum withdrawal of established lymphoblastoid cell lines from control and carriers of c.709-1G>A PGRN mutation, asymptomatic and FTLD-TDP diagnosed individuals. Our results suggest that the CDK6/pRb pathway is enhanced in the c.709-1G>A bearing lymphoblasts. Apparently, this feature allows PGRN-deficient cells to escape from serum withdrawal-induced apoptosis by decreasing the activity of executive caspases and lowering the dissipation of mitochondrial membrane potential and the release of cytochrome c from the mitochondria. Inhibitors of CDK6 expression levels like sodium butyrate or the CDK6 activity such as PD332991 were able to restore the vulnerability of lymphoblasts from FTLD-TDP patients to trophic factor withdrawal. The use of PGRN-deficient lymphoblasts from FTLD-TDP patients may be a useful model to investigate cell biochemical aspects of this disease. It is suggested that CDK6 could be potentially a therapeutic target for the treatment of the FTLD-TDP.
Longitudinal Neuropsychological Study of Presymptomatic c.709-1G>A Progranulin Mutation Carriers
Objective: The assessment of individuals from families affected by familial frontotemporal dementia (FTD) allows the evaluation of preclinical or pre-diagnosis disease markers. The current work aims to investigate the existence of a cognitive phase in GRN mutation carriers before overt clinical symptoms begin. Methods: We performed a longitudinal neuropsychological analysis (three assessments in 4 years) in a group of presymptomatic c.709-1G>A progranulin (GRN) (n=15) mutation carriers and non-carrier relatives (n=25) from seven FTD families. Results: GRN mutation carriers showed subtle decline over the longitudinal follow-up in several different domains (namely, attention, facial affect recognition, decision-making, language, and memory). The differences between groups were most marked in the facial affect recognition test, with improvement in the non-carrier group and decline in the GRN mutation carrier group, with very large effect sizes. Conclusions: Facial affect recognition may decline before clinical diagnosis and makes the adapted version of the Picture of Facial Affect a potential candidate for early detection of GRN-associated FTD. (JINS, 2019, 25, 39–47)
Neuropsychological Features of Asymptomatic c.709-1G>A Progranulin Mutation Carriers
Mutations in the progranulin (PGRN) gene have been identified as a cause of frontotemporal dementia (FTD). However, little is known about the neuropsychological abilities of asymptomatic carriers of these mutations. The aim of the study was to assess cognitive functioning in asymptomatic c.709-1G>A PGRN mutation carriers. We hypothesized that poorer neuropsychological performance could be present before the development of clinically significant FTD symptoms. Thirty-two asymptomatic first-degree relatives of FTD patients carrying the c.709-1G>A mutation served as study participants, including 13 PGRN mutation carriers (A-PGRN+) and 19 non-carriers (PGRN-). A neuropsychological battery was administered. We found that the A-PGRN+ participants obtained significantly poorer scores than PGRN- individuals on tests of attention (Trail-Making Test Part A), mental flexibility (Trail-Making Test Part B), and language (Boston Naming Test). Poorer performance on these tests in asymptomatic PGRN mutation carriers may reflect a prodromal phase preceding the onset of clinically significant symptoms of FTD. (JINS, 2012, 18, 1086–1090)
Differential Gene Expression in Sporadic and Genetic Forms of Alzheimer’s Disease and Frontotemporal Dementia in Brain Tissue and Lymphoblastoid Cell Lines
Sporadic early-onset Alzheimer’s disease (EOAD) and autosomal dominant Alzheimer’s disease (ADAD) provide the opportunity to investigate the physiopathological mechanisms in the absence of aging, present in late-onset forms. Frontotemporal dementia (FTD) causes early-onset dementia associated to tau or TDP43 protein deposits. A 15% of FTD cases are caused by mutations in C9orf72 , GRN , or MAPT genes. Lymphoblastoid cell lines (LCLs) have been proposed as an alternative to brain tissue for studying earlier phases of neurodegenerative diseases. The aim of this study is to investigate the expression profile in EOAD, ADAD, and sporadic and genetic FTD (sFTD and gFTD, respectively), using brain tissue and LCLs. Sixty subjects of the following groups were included: EOAD, ADAD, sFTD, gFTD, and controls. Gene expression was analyzed with Clariom D microarray (Affymetrix). Brain tissue pairwise comparisons revealed six common differentially expressed genes (DEG) for all the patients’ groups compared with controls: RGS20 , WIF1 , HSPB1 , EMP3 , S100A11 and GFAP. Common up-regulated biological pathways were identified both in brain and LCLs (including inflammation and glial cell differentiation), while down-regulated pathways were detected mainly in brain tissue (including synaptic signaling, metabolism and mitochondrial dysfunction). CD163, ADAMTS9 and LIN7A gene expression disruption was validated by qPCR in brain tissue and NrCAM in LCLs in their respective group comparisons. In conclusion, our study highlights neuroinflammation, metabolism and synaptic signaling disturbances as common altered pathways in different AD and FTD forms. The use of LCLs might be appropriate for studying early immune system and inflammation, and some neural features in neurodegenerative dementias.