Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
67
result(s) for
"Moreno-Estrada, Andrés"
Sort by:
The Mexican Biobank Project promotes genetic discovery, inclusive science and local capacity building
by
Moreno-Estrada, Andrés
,
Sohail, Mashaal
in
biobanks
,
Biological Specimen Banks
,
Capacity Building
2024
Diversifying genotype–phenotype databases is essential to understanding complex trait and disease etiology across different environments and genetic ancestries. The rise of biobanks across the world is helping reveal the genetic and environmental architecture of multiple disease traits but the diversity they capture remains limited. To help close this gap, the Mexican Biobank (MXB) Project was recently generated, and has already revealed fine-scale genetic ancestries and demographic histories across the country, and their impact on trait-relevant genetic variation. This will help guide future genetic epidemiology and public health efforts, and has also improved polygenic prediction for several traits in Mexican populations compared with using data from other genome-wide association studies, such as the UK Biobank. The MXB illustrates the importance of transnational initiatives and funding calls that prioritize local leadership and capacity building to move towards inclusive genomic science.
Journal Article
Genomic Insights into the Ancestry and Demographic History of South America
by
Pons-Estel, Bernardo A
,
Nelson, Dominic
,
Langefeld, Carl D
in
African Continental Ancestry Group - genetics
,
Argentina
,
Colombia
2015
South America has a complex demographic history shaped by multiple migration and admixture events in pre- and post-colonial times. Settled over 14,000 years ago by Native Americans, South America has experienced migrations of European and African individuals, similar to other regions in the Americas. However, the timing and magnitude of these events resulted in markedly different patterns of admixture throughout Latin America. We use genome-wide SNP data for 437 admixed individuals from 5 countries (Colombia, Ecuador, Peru, Chile, and Argentina) to explore the population structure and demographic history of South American Latinos. We combined these data with population reference panels from Africa, Asia, Europe and the Americas to perform global ancestry analysis and infer the subcontinental origin of the European and Native American ancestry components of the admixed individuals. By applying ancestry-specific PCA analyses we find that most of the European ancestry in South American Latinos is from the Iberian Peninsula; however, many individuals trace their ancestry back to Italy, especially within Argentina. We find a strong gradient in the Native American ancestry component of South American Latinos associated with country of origin and the geography of local indigenous populations. For example, Native American genomic segments in Peruvians show greater affinities with Andean indigenous peoples like Quechua and Aymara, whereas Native American haplotypes from Colombians tend to cluster with Amazonian and coastal tribes from northern South America. Using ancestry tract length analysis we modeled post-colonial South American migration history as the youngest in Latin America during European colonization (9-14 generations ago), with an additional strong pulse of European migration occurring between 3 and 9 generations ago. These genetic footprints can impact our understanding of population-level differences in biomedical traits and, thus, inform future medical genetic studies in the region.
Journal Article
Genome-wide patterns of population structure and admixture among Hispanic/Latino populations
by
Velez, Christopher
,
Moreno-Estrada, Andres
,
Reynolds, Andy
in
Admixtures
,
Ancestry
,
Chromosomes
2010
Hispanic/Latino populations possess a complex genetic structure that reflects recent admixture among and potentially ancient substructure within Native American, European, and West African source populations. Here, we quantify genome-wide patterns of SNP and haplotype variation among 100 individuals with ancestry from Ecuador, Colombia, Puerto Rico, and the Dominican Republic genotyped on the Illumina 610-Quad arrays and 112 Mexicans genotyped on Affymetrix 500K platform. Intersecting these data with previously collected high-density SNP data from 4,305 individuals, we use principal component analysis and clustering methods FRAPPE and STRUCTURE to investigate genome-wide patterns of African, European, and Native American population structure within and among Hispanic/Latino populations. Comparing autosomal, X and Y chromosome, and mtDNA variation, we find evidence of a significant sex bias in admixture proportions consistent with disproportionate contribution of European male and Native American female ancestry to present-day populations. We also find that patterns of linkage-disequilibria in admixed Hispanic/Latino populations are largely affected by the admixture dynamics of the populations, with faster decay of LD in populations of higher African ancestry. Finally, using the locus-specific ancestry inference method LAMP, we reconstruct fine-scale chromosomal patterns of admixture. We document moderate power to differentiate among potential subcontinental source populations within the Native American, European, and African segments of the admixed Hispanic/Latino genomes. Our results suggest future genome-wide association scans in Hispanic/Latino populations may require correction for local genomic ancestry at a subcontinental scale when associating differences in the genome with disease risk, progression, and drug efficacy, as well as for admixture mapping.
Journal Article
Genomic Ancestry of North Africans Supports Back-to-Africa Migrations
by
Henn, Brenna M.
,
Botigué, Laura R.
,
Brisbin, Abra
in
Africa South of the Sahara - ethnology
,
Africa, Northern
,
African Continental Ancestry Group - genetics
2012
North African populations are distinct from sub-Saharan Africans based on cultural, linguistic, and phenotypic attributes; however, the time and the extent of genetic divergence between populations north and south of the Sahara remain poorly understood. Here, we interrogate the multilayered history of North Africa by characterizing the effect of hypothesized migrations from the Near East, Europe, and sub-Saharan Africa on current genetic diversity. We present dense, genome-wide SNP genotyping array data (730,000 sites) from seven North African populations, spanning from Egypt to Morocco, and one Spanish population. We identify a gradient of likely autochthonous Maghrebi ancestry that increases from east to west across northern Africa; this ancestry is likely derived from \"back-to-Africa\" gene flow more than 12,000 years ago (ya), prior to the Holocene. The indigenous North African ancestry is more frequent in populations with historical Berber ethnicity. In most North African populations we also see substantial shared ancestry with the Near East, and to a lesser extent sub-Saharan Africa and Europe. To estimate the time of migration from sub-Saharan populations into North Africa, we implement a maximum likelihood dating method based on the distribution of migrant tracts. In order to first identify migrant tracts, we assign local ancestry to haplotypes using a novel, principal component-based analysis of three ancestral populations. We estimate that a migration of western African origin into Morocco began about 40 generations ago (approximately 1,200 ya); a migration of individuals with Nilotic ancestry into Egypt occurred about 25 generations ago (approximately 750 ya). Our genomic data reveal an extraordinarily complex history of migrations, involving at least five ancestral populations, into North Africa.
Journal Article
The genomic footprint of whaling and isolation in fin whale populations
2023
Twentieth century industrial whaling pushed several species to the brink of extinction, with fin whales being the most impacted. However, a small, resident population in the Gulf of California was not targeted by whaling. Here, we analyzed 50 whole-genomes from the Eastern North Pacific (ENP) and Gulf of California (GOC) fin whale populations to investigate their demographic history and the genomic effects of natural and human-induced bottlenecks. We show that the two populations diverged ~16,000 years ago, after which the ENP population expanded and then suffered a 99% reduction in effective size during the whaling period. In contrast, the GOC population remained small and isolated, receiving less than one migrant per generation. However, this low level of migration has been crucial for maintaining its viability. Our study exposes the severity of whaling, emphasizes the importance of migration, and demonstrates the use of genome-based analyses and simulations to inform conservation strategies.
Industrial whaling drove several species to near extinction. From an analysis of 50 whole-genomes from fin whale populations, this study shows that the fin whale population in the Eastern North Pacific was reduced 99% during whaling but has maintained genomic diversity, whereas the Gulf of California population remained small and isolated, resulting in increased genetic load.
Journal Article
Reconstructing Native American Migrations from Whole-Genome and Whole-Exome Data
by
Guiblet, Wilfried
,
Moreno-Estrada, Andres
,
Gignoux, Christopher R.
in
Aborígens
,
African Continental Ancestry Group - genetics
,
America
2013
There is great scientific and popular interest in understanding the genetic history of populations in the Americas. We wish to understand when different regions of the continent were inhabited, where settlers came from, and how current inhabitants relate genetically to earlier populations. Recent studies unraveled parts of the genetic history of the continent using genotyping arrays and uniparental markers. The 1000 Genomes Project provides a unique opportunity for improving our understanding of population genetic history by providing over a hundred sequenced low coverage genomes and exomes from Colombian (CLM), Mexican-American (MXL), and Puerto Rican (PUR) populations. Here, we explore the genomic contributions of African, European, and especially Native American ancestry to these populations. Estimated Native American ancestry is 48% in MXL, 25% in CLM, and 13% in PUR. Native American ancestry in PUR is most closely related to populations surrounding the Orinoco River basin, confirming the Southern American ancestry of the Taíno people of the Caribbean. We present new methods to estimate the allele frequencies in the Native American fraction of the populations, and model their distribution using a demographic model for three ancestral Native American populations. These ancestral populations likely split in close succession: the most likely scenario, based on a peopling of the Americas 16 thousand years ago (kya), supports that the MXL Ancestors split 12.2kya, with a subsequent split of the ancestors to CLM and PUR 11.7kya. The model also features effective populations of 62,000 in Mexico, 8,700 in Colombia, and 1,900 in Puerto Rico. Modeling Identity-by-descent (IBD) and ancestry tract length, we show that post-contact populations also differ markedly in their effective sizes and migration patterns, with Puerto Rico showing the smallest effective size and the earlier migration from Europe. Finally, we compare IBD and ancestry assignments to find evidence for relatedness among European founders to the three populations.
Journal Article
Melanesian Blond Hair Is Caused by an Amino Acid Change in TYRP1
by
Myles, Sean
,
Yee, Muh-Ching
,
Timpson, Nicholas J.
in
Alleles
,
Amino Acid Substitution
,
Amino acids
2012
Naturally blond hair in Solomon Islanders maps to a missense mutation in a gene associated with pigmentation. Naturally blond hair is rare in humans and found almost exclusively in Europe and Oceania. Here, we identify an arginine-to-cysteine change at a highly conserved residue in tyrosinase-related protein 1 (TYRP1) as a major determinant of blond hair in Solomon Islanders. This missense mutation is predicted to affect catalytic activity of TYRP1 and causes blond hair through a recessive mode of inheritance. The mutation is at a frequency of 26% in the Solomon Islands, is absent outside of Oceania, represents a strong common genetic effect on a complex human phenotype, and highlights the importance of examining genetic associations worldwide.
Journal Article
A genome-wide association and admixture mapping study of bronchodilator drug response in African Americans with asthma
by
Chapela, Rocio
,
Meade, Kelley
,
Myers, Deborah A
in
Adrenergic receptors
,
African Americans
,
Asthma
2019
Short-acting β2-adrenergic receptor agonists (SABAs) are the most commonly prescribed asthma medications worldwide. Response to SABAs is measured as bronchodilator drug response (BDR), which varies among racial/ethnic groups in the United States. However, the genetic variation that contributes to BDR is largely undefined in African Americans with asthma. To identify genetic variants that may contribute to differences in BDR in African Americans with asthma, we performed a genome-wide association study (GWAS) of BDR in 949 African-American children with asthma, genotyped with the Axiom World Array 4 (Affymetrix, Santa Clara, CA) followed by imputation using 1000 Genomes phase III genotypes. We used linear regression models adjusting for age, sex, body mass index (BMI) and genetic ancestry to test for an association between BDR and genotype at single-nucleotide polymorphisms (SNPs). To increase power and distinguish between shared vs. population-specific associations with BDR in children with asthma, we performed a meta-analysis across 949 African Americans and 1830 Latinos (total = 2779). Finally, we performed genome-wide admixture mapping to identify regions whereby local African or European ancestry is associated with BDR in African Americans. We identified a population-specific association with an intergenic SNP on chromosome 9q21 that was significantly associated with BDR (rs73650726, p = 7.69 × 10−9). A trans-ethnic meta-analysis across African Americans and Latinos identified three additional SNPs within the intron of PRKG1 that were significantly associated with BDR (rs7903366, rs7070958 and rs7081864, p ≤ 5 × 10−8). Our results failed to replicate in three additional populations of 416 Latinos and 1615 African Americans. Our findings indicate that both population-specific and shared genetic variation contributes to differences in BDR in minority children with asthma, and that the genetic underpinnings of BDR may differ between racial/ethnic groups.
Journal Article
Evolution of the Mutation Spectrum Across a Mammalian Phylogeny
2023
Abstract
Although evolutionary biologists have long theorized that variation in DNA repair efficacy might explain some of the diversity of lifespan and cancer incidence across species, we have little data on the variability of normal germline mutagenesis outside of humans. Here, we shed light on the spectrum and etiology of mutagenesis across mammals by quantifying mutational sequence context biases using polymorphism data from thirteen species of mice, apes, bears, wolves, and cetaceans. After normalizing the mutation spectrum for reference genome accessibility and k-mer content, we use the Mantel test to deduce that mutation spectrum divergence is highly correlated with genetic divergence between species, whereas life history traits like reproductive age are weaker predictors of mutation spectrum divergence. Potential bioinformatic confounders are only weakly related to a small set of mutation spectrum features. We find that clock-like mutational signatures previously inferred from human cancers cannot explain the phylogenetic signal exhibited by the mammalian mutation spectrum, despite the ability of these signatures to fit each species’ 3-mer spectrum with high cosine similarity. In contrast, parental aging signatures inferred from human de novo mutation data appear to explain much of the 1-mer spectrum's phylogenetic signal in combination with a novel mutational signature. We posit that future models purporting to explain the etiology of mammalian mutagenesis need to capture the fact that more closely related species have more similar mutation spectra; a model that fits each marginal spectrum with high cosine similarity is not guaranteed to capture this hierarchy of mutation spectrum variation among species.
Journal Article
Mexican Biobank advances population and medical genomics of diverse ancestries
2023
Latin America continues to be severely underrepresented in genomics research, and fine-scale genetic histories and complex trait architectures remain hidden owing to insufficient data
1
. To fill this gap, the Mexican Biobank project genotyped 6,057 individuals from 898 rural and urban localities across all 32 states in Mexico at a resolution of 1.8 million genome-wide markers with linked complex trait and disease information creating a valuable nationwide genotype–phenotype database. Here, using ancestry deconvolution and inference of identity-by-descent segments, we inferred ancestral population sizes across Mesoamerican regions over time, unravelling Indigenous, colonial and postcolonial demographic dynamics
2
–
6
. We observed variation in runs of homozygosity among genomic regions with different ancestries reflecting distinct demographic histories and, in turn, different distributions of rare deleterious variants. We conducted genome-wide association studies (GWAS) for 22 complex traits and found that several traits are better predicted using the Mexican Biobank GWAS compared to the UK Biobank GWAS
7
,
8
. We identified genetic and environmental factors associating with trait variation, such as the length of the genome in runs of homozygosity as a predictor for body mass index, triglycerides, glucose and height. This study provides insights into the genetic histories of individuals in Mexico and dissects their complex trait architectures, both crucial for making precision and preventive medicine initiatives accessible worldwide.
Nationwide genomic biobank in Mexico unravels demographic history and complex trait architecture from 6,057 individuals.
Journal Article