Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
186
result(s) for
"Moriyama, Hiroyuki"
Sort by:
Royal Jelly Protects against Epidermal Stress through Upregulation of the NQO1 Expression
2021
Royal jelly (RJ) is secreted by honeybees and has been used as an apitherapy to obtain healthy skin since ancient times. However, the mechanism of the protective effects of RJ against skin aging and skin diseases caused by skin stress and its components have not been clarified. In this study, we attempted to understand the effect of RJ on epidermal function and observed that NAD(P)H quinone dehydrogenase 1 (NQO1) is significantly induced by RJ in keratinocytes. The expression of NQO1 was also increased in the 3D epidermal skin model. NQO1 is involved in antioxidation and detoxification metabolism, and we found that RJ protects against the epidermal stress caused by UVB and menadione through the upregulation of NQO1. We identified 10-hydroxy-2-decenoic acid (10H2DA), a major fatty acid in RJ, as an active compound in this reaction as it induced the expression of NQO1 and protected the skin against oxidative stress. We demonstrated that the protective effect of RJ against epidermal stress is mediated through the upregulation of NQO1 by 10H2DA.
Journal Article
Sage extract and ascorbic acid derivative inhibit melanogenesis via downregulating keratinocyte-derived GM-CSF
by
Miyake, Yuko
,
Kubo, Hirokazu
,
Ozeki, Yuki
in
Analysis
,
Enzyme-linked immunosorbent assay
,
Health aspects
2025
Salvia officinalis (sage) extract has demonstrated potential as a functional ingredient for skin care application. However, its effect and mechanism in regulating skin pigmentation remain largely unclear. This study investigated the effects of sage ethanol extract (SGE) on melanogenesis and its underlying molecular mechanisms. Treatment with SGE in a human skin equivalent model (3D-skin) suppressed melanin production. To clarify the mechanism of action, the study focused on senescence-associated secretory phenotype (SASP) factors, which are implicated in age-related pigmentation changes. q-PCR and ELISA analyses showed that SGE inhibits melanogenesis by suppressing the expression of granulocyte-macrophage colony-stimulating factor (GM-CSF), a known SASP factor in keratinocytes. Interestingly, a similar effect was observed with L-ascorbic acid 2-glucoside (AG), previously identified as a tyrosinase inhibitor. Importantly, p38 and JNK MAP-kinase were identified as upstream regulators of GM-CSF that are suppressed by SGE. These findings provide new insights into how SGE and AG regulate pigmentation via keratinocyte-derived GM-CSF, highlighting their potential in modulating skin tone and pigmentation through cellular signaling pathways.
Journal Article
Sage extract and ascorbic acid derivative inhibit melanogenesis via downregulating keratinocyte-derived GM-CSF
2025
Salvia officinalis (sage) extract has demonstrated potential as a functional ingredient for skin care application. However, its effect and mechanism in regulating skin pigmentation remain largely unclear. This study investigated the effects of sage ethanol extract (SGE) on melanogenesis and its underlying molecular mechanisms. Treatment with SGE in a human skin equivalent model (3D-skin) suppressed melanin production. To clarify the mechanism of action, the study focused on senescence-associated secretory phenotype (SASP) factors, which are implicated in age-related pigmentation changes. q-PCR and ELISA analyses showed that SGE inhibits melanogenesis by suppressing the expression of granulocyte-macrophage colony-stimulating factor (GM-CSF), a known SASP factor in keratinocytes. Interestingly, a similar effect was observed with L-ascorbic acid 2-glucoside (AG), previously identified as a tyrosinase inhibitor. Importantly, p38 and JNK MAP-kinase were identified as upstream regulators of GM-CSF that are suppressed by SGE. These findings provide new insights into how SGE and AG regulate pigmentation via keratinocyte-derived GM-CSF, highlighting their potential in modulating skin tone and pigmentation through cellular signaling pathways.
Journal Article
Beneficial Effects of the Genus Aloe on Wound Healing, Cell Proliferation, and Differentiation of Epidermal Keratinocytes
2016
Aloe has been used as a folk medicine because it has several important therapeutic properties. These include wound and burn healing, and Aloe is now used in a variety of commercially available topical medications for wound healing and skin care. However, its effects on epidermal keratinocytes remain largely unclear. Our data indicated that both Aloe vera gel (AVG) and Cape aloe extract (CAE) significantly improved wound healing in human primary epidermal keratinocytes (HPEKs) and a human skin equivalent model. In addition, flow cytometry analysis revealed that cell surface expressions of β1-, α6-, β4-integrin, and E-cadherin increased in HPEKs treated with AVG and CAE. These increases may contribute to cell migration and wound healing. Treatment with Aloe also resulted in significant changes in cell-cycle progression and in increases in cell number. Aloe increased gene expression of differentiation markers in HPEKs, suggesting roles for AVG and CAE in the improvement of keratinocyte function. Furthermore, human skin epidermal equivalents developed from HPEKs with medium containing Aloe were thicker than control equivalents, indicating the effectiveness of Aloe on enhancing epidermal development. Based on these results, both AVG and CAE have benefits in wound healing and in treatment of rough skin.
Journal Article
Hypoxia Increases Gefitinib-Resistant Lung Cancer Stem Cells through the Activation of Insulin-Like Growth Factor 1 Receptor
2014
Accumulating evidence indicates that a small population of cancer stem cells (CSCs) is involved in intrinsic resistance to cancer treatment. The hypoxic microenvironment is an important stem cell niche that promotes the persistence of CSCs in tumors. Our aim here was to elucidate the role of hypoxia and CSCs in the resistance to gefitinib in non-small cell lung cancer (NSCLC) with activating epidermal growth factor receptor (EGFR) mutation. NSCLC cell lines, PC9 and HCC827, which express the EGFR exon 19 deletion mutations, were exposed to high concentration of gefitinib under normoxic or hypoxic conditions. Seven days after gefitinib exposure, a small fraction of viable cells were detected, and these were referred to as \"gefitinib-resistant persisters\" (GRPs). CD133, Oct4, Sox2, Nanog, CXCR4, and ALDH1A1-all genes involved in stemness-were highly expressed in GRPs in PC9 and HCC827 cells, and PC9 GRPs exhibited a high potential for tumorigenicity in vivo. The expression of insulin-like growth factor 1 (IGF1) was also upregulated and IGF1 receptor (IGF1R) was activated on GRPs. Importantly, hypoxic exposure significantly increased sphere formation, reflecting the self-renewal capability, and the population of CD133- and Oct4-positive GRPs. Additionally, hypoxia upregulated IGF1 expression through hypoxia-inducible factor 1α (HIF1α), and markedly promoted the activation of IGF1R on GRPs. Knockdown of IGF1 expression significantly reduced phosphorylated IGF1R-expressing GRPs under hypoxic conditions. Finally, inhibition of HIF1α or IGF1R by specific inhibitors significantly decreased the population of CD133- and Oct4-positive GRPs, which were increased by hypoxia in PC9 and HCC827 cells. Collectively, these findings suggest that hypoxia increased the population of lung CSCs resistant to gefitinib in EGFR mutation-positive NSCLC by activating IGF1R. Targeting the IGF1R pathway may be a promising strategy for overcoming gefitinib resistance in EGFR mutation-positive NSCLC induced by lung CSCs and microenvironment factors such as tumor hypoxia.
Journal Article
BNIP3 upregulation via stimulation of ERK and JNK activity is required for the protection of keratinocytes from UVB-induced apoptosis
2017
The human skin has an important role in barrier function. Ultraviolet rays (UV) from sunlight exposure can cause cell apoptosis in the skin epidermis, resulting in the disruption of the barrier. Previously, we have demonstrated that BNIP3 stimulates autophagy in epidermal keratinocytes and has a protective effect in these cells upon UVB irradiation. In this study, we found that the accumulation of reactive oxygen species (ROS) by UVB irradiation was sufficient to trigger the activation of JNK and ERK mitogen-activated protein kinase (MAPK) in human primary epidermal keratinocytes. In turn, activated JNK and ERK MAPK mediated the upregulation of BNIP3 expression. Treatment with an antioxidant reagent or a specific inhibitor of MAPK, U0126, and a JNK inhibitor significantly attenuated the expression of BNIP3 triggered by UVB, followed by the induction of cell death by apoptosis. Furthermore, UVB-induced apoptosis was significantly stimulated by chloroquine or bafilomycin A1, an inhibitor of autophagy. Moreover, BNIP3 was required for the degradation of dysfunctional mitochondria upon UVB irradiation. These data clearly indicated that BNIP3-induced autophagy, which occurs via UVB-generated ROS-mediated JNK and ERK MAPK activation, has a crucial role in the protection of the skin epidermis against UVB irradiation.
Journal Article
BNIP3 Plays Crucial Roles in the Differentiation and Maintenance of Epidermal Keratinocytes
2014
Transcriptome analysis of the epidermis of Hes1−/− mouse revealed the direct relationship between Hes1 (hairy and enhancer of split-1) and BNIP3 (BCL2 and adenovirus E1B 19-kDa-interacting protein 3), a potent inducer of autophagy. Keratinocyte differentiation is going along with activation of lysosomal enzymes and organelle clearance, expecting the contribution of autophagy in this process. We found that BNIP3 was expressed in the suprabasal layer of the epidermis, where autophagosome formation is normally observed. Forced expression of BNIP3 in human primary epidermal keratinocytes (HPEKs) resulted in autophagy induction and keratinocyte differentiation, whereas knockdown of BNIP3 had the opposite effect. Intriguingly, addition of an autophagy inhibitor significantly suppressed the BNIP3-stimulated differentiation of keratinocytes, suggesting that BNIP3 plays a crucial role in keratinocyte differentiation by inducing autophagy. Furthermore, the number of dead cells increased in the human epidermal equivalent of BNIP3 knockdown keratinocytes, which suggests that BNIP3 is important for maintenance of skin epidermis. Interestingly, although UVB irradiation stimulated BNIP3 expression and cleavage of caspase3, suppression of UVB-induced BNIP3 expression led to further increase in cleaved caspase3 levels. This suggests that BNIP3 has a protective effect against UVB-induced apoptosis in keratinocytes. Overall, our data provide valuable insights into the role of BNIP3 in the differentiation and maintenance of epidermal keratinocytes.
Journal Article
Differentiation of Human Adipose-Derived Mesenchymal Stromal/Stem Cells into Insulin-Producing Cells with A Single Tet-Off Lentiviral Vector System
by
Ozawa, Toshiyuki
,
Moriyama, Mariko
,
Tsuruta, Daisuke
in
adipose-derived mesenchymal stromal/stem cells
,
Antibiotics
,
Beta2 protein
2022
Human adipose-derived mesenchymal stromal/stem cells (hASC) constitute an attractive source of stem cells for cell-based therapies in regenerative medicine and tissue engineering as they are easy to acquire from lipoaspirate, expansion, and genetic modification ex vivo. The combination of Pdx-1, MafA, and NeuroD1 has been indicated to possess the ability to reprogram various types of cells into insulin-producing cells. The aim of this study is to investigate whether MafA and NeuroD1 would cooperate with Pdx-1 in the differentiation of hASC into insulin-producing cells.
In this experimental study, we generated polycistronic expression vectors expressing Pdx1 and MafA/NeuroD1 with a reporter from a human EF-1α promoter using 2A peptides in a single tet-off lentiviral vector system. Briefly, hASC were transduced with the lentiviral vectors and allowed to differentiate into insulin-producing cells
and
. Thereafter, RNA expression, dithizone staining, and immunofluorescent analysis were conducted.
Cleaved transcriptional factors from a single tet-off lentiviral vector were functionally equivalent to their native proteins and strictly regulated by doxycycline (Dox). Insulin gene expression in hASC transduced with Pdx1, Pdx1/ MafA, and Pdx1/NeuroD1 in differentiation medium were successfully increased by 1.89 ± 0.39, 4.81 ± 0.98, 5.51 ± 0.63, respectively, compared to venus-transduced, control hASC. These cells could form dithizone-positive cell clusters
and were found to express insulin
.
Using our single tet-off lentiviral vector system, Pdx-1 and MafA/NeuroD1 could be simultaneously expressed in the absence of Dox. Further, this system allowed the differentiation of hASC into insulin-producing cells.
Journal Article
Hydrostatic pressure can induce apoptosis of the skin
by
Le, Tien Minh
,
Ly, Nhung Thi My
,
Morimoto, Naoki
in
631/61/2035
,
631/61/54
,
Apoptosis - physiology
2020
We previously showed that high hydrostatic pressure (HHP) treatment at 200 MPa for 10 min induced complete cell death in skin and skin tumors via necrosis. We used this technique to treat a giant congenital melanocytic nevus and reused the inactivated nevus tissue as a dermis autograft. However, skin inactivated by HHP promoted inflammation in a preclinical study using a porcine model. Therefore, in the present study, we explored the pressurization conditions that induce apoptosis of the skin, as apoptotic cells are not believed to promote inflammation, so the engraftment of inactivated skin should be improved. Using a human dermal fibroblast cell line in suspension culture, we found that HHP at 50 MPa for ≥ 36 h completely induced fibroblast cell death via apoptosis based on the morphological changes in transmission electron microscopy, reactive oxygen species elevation, caspase activation and phosphatidylserine membrane translocation. Furthermore, immunohistochemistry with terminal deoxynucleotidyl transferase dUTP nick-end labeling and cleaved caspase-3 showed most cells in the skin inactivated by pressurization to be apoptotic. Consequently, in vivo grafting of apoptosis-induced inactivated skin resulted in successful engraftment and greater dermal cellular density and macrophage infiltration than our existing method. Our finding supports an alternative approach to hydrostatic pressure application.
Journal Article
Adipose-derived stromal/stem cells improve epidermal homeostasis
2019
Wound healing is regulated by complex interactions between the keratinocytes and other cell types including fibroblasts. Recently, adipose-derived mesenchymal stromal/stem cells (ASCs) have been reported to influence wound healing positively via paracrine involvement. However, their roles in keratinocytes are still obscure. Therefore, investigation of the precise effects of ASCs on keratinocytes in an
in vitro
culture system is required. Our recent data indicate that the epidermal equivalents became thicker on a collagen vitrigel membrane co-cultured with human ASCs (hASCs). Co-culturing the human primary epidermal keratinocytes (HPEK) with hASCs on a collagen vitrigel membrane enhanced their abilities for cell proliferation and adhesion to the membrane but suppressed their differentiation suggesting that hASCs could maintain the undifferentiated status of HPEK. Contrarily, the effects of co-culture using polyethylene terephthalate or polycarbonate membranes for HPEK were completely opposite. These differences may depend on the protein permeability and/or structure of the membrane. Taken together, our data demonstrate that hASCs could be used as a substitute for fibroblasts in skin wound repair, aesthetic medicine, or tissue engineering. It is also important to note that a co-culture system using the collagen vitrigel membrane allows better understanding of the interactions between the keratinocytes and ASCs.
Journal Article