Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
75
result(s) for
"Morosinotto, Tomas"
Sort by:
Balancing protection and efficiency in the regulation of photosynthetic electron transport across plant evolution
2019
Photosynthetic electron transport requires continuous modulation to maintain the balance between light availability and metabolic demands. Multiple mechanisms for the regulation of electron transport have been identified and are unevenly distributed among photosynthetic organisms. Flavodiiron proteins (FLVs) influence photosynthetic electron transport by accepting electrons downstream of photosystem I to reduce oxygen to water. FLV activity has been demonstrated in cyanobacteria, green algae and mosses to be important in avoiding photosystem I overreduction upon changes in light intensity. FLV-encoding sequences were nevertheless lost during evolution by angiosperms, suggesting that these plants increased the efficiency of other mechanisms capable of accepting electrons from photosystem I, making the FLV activity for protection from overreduction superfluous or even detrimental for photosynthetic efficiency.
Journal Article
Regulation of electron transport is essential for photosystem I stability and plant growth
by
Segalla, Anna
,
Mellon, Marco
,
Alboresi, Alessandro
in
Angiosperms
,
Bryopsida - metabolism
,
Deactivation
2020
• Photosynthetic electron transport is regulated by cyclic and pseudocyclic electron flow (CEF and PCEF) to maintain the balance between light availability and metabolic demands. CEF transfers electrons from photosystem I to the plastoquinone pool with two mechanisms, dependent either on PGR5/PGRL1 or on the type I NADH dehydrogenase-like (NDH) complex. PCEF uses electrons from photosystem I to reduce oxygen and in many groups of photosynthetic organisms, but remarkably not in angiosperms, it is catalyzed by flavodiiron proteins (FLVs).
• In this study, Physcomitrella patens plants depleted in PGRL1, NDH and FLVs in different combinations were generated and characterized, showing that all these mechanisms are active in this moss.
• Surprisingly, in contrast to flowering plants, Physcomitrella patens can cope with the simultaneous inactivation of PGR5- and NDH-dependent CEF but, when FLVs are also depleted, plants show strong growth reduction and photosynthetic activity is drastically reduced.
• The results demonstrate that mechanisms for modulation of photosynthetic electron transport have large functional overlap but are together indispensable to protect photosystem I from damage and they are an essential component for photosynthesis in any light regime.
Journal Article
Role of an ancient light-harvesting protein of PSI in light absorption and photoprotection
2021
Diverse algae of the red lineage possess chlorophyll
a
-binding proteins termed LHCR, comprising the PSI light-harvesting system, which represent an ancient antenna form that evolved in red algae and was acquired through secondary endosymbiosis. However, the function and regulation of LHCR complexes remain obscure. Here we describe isolation of a
Nannochloropsis oceanica
LHCR mutant, named
hlr1
, which exhibits a greater tolerance to high-light (HL) stress compared to the wild type. We show that increased tolerance to HL of the mutant can be attributed to alterations in PSI, making it less prone to ROS production, thereby limiting oxidative damage and favoring growth in HL. HLR1 deficiency attenuates PSI light-harvesting capacity and growth of the mutant under light-limiting conditions. We conclude that HLR1, a member of a conserved and broadly distributed clade of LHCR proteins, plays a pivotal role in a dynamic balancing act between photoprotection and efficient light harvesting for photosynthesis.
LHCR proteins are ancient chlorophyll
a
-binding antennas that evolved in diverse algae of the red lineage. Here Lu et al. characterize a red lineage LHCR mutant and show reduced oxidative damage in high light but attenuated growth under low light, thus demonstrating how LHCR proteins impact the balance between photoprotection and light harvesting.
Journal Article
Adjusted Light and Dark Cycles Can Optimize Photosynthetic Efficiency in Algae Growing in Photobioreactors
2012
Biofuels from algae are highly interesting as renewable energy sources to replace, at least partially, fossil fuels, but great research efforts are still needed to optimize growth parameters to develop competitive large-scale cultivation systems. One factor with a seminal influence on productivity is light availability. Light energy fully supports algal growth, but it leads to oxidative stress if illumination is in excess. In this work, the influence of light intensity on the growth and lipid productivity of Nannochloropsis salina was investigated in a flat-bed photobioreactor designed to minimize cells self-shading. The influence of various light intensities was studied with both continuous illumination and alternation of light and dark cycles at various frequencies, which mimic illumination variations in a photobioreactor due to mixing. Results show that Nannochloropsis can efficiently exploit even very intense light, provided that dark cycles occur to allow for re-oxidation of the electron transporters of the photosynthetic apparatus. If alternation of light and dark is not optimal, algae undergo radiation damage and photosynthetic productivity is greatly reduced. Our results demonstrate that, in a photobioreactor for the cultivation of algae, optimizing mixing is essential in order to ensure that the algae exploit light energy efficiently.
Journal Article
Knowledge of Regulation of Photosynthesis in Outdoor Microalgae Cultures Is Essential for the Optimization of Biomass Productivity
by
Gambaro, Francesca
,
Morosinotto, Tomas
,
Perin, Giorgio
in
Acclimation
,
Acclimatization
,
Algae
2022
How does microalgae photosynthesis respond to outdoor cultivation at industrial-scale? Microalgae represent a sustainable source of biomass that can be exploited for pharmaceutical, nutraceutical, cosmetic applications, as well as for food, feed, chemicals, and energy. To make microalgae applications economically competitive and maximize their positive environmental impact, it is however necessary to optimize productivity when cultivated at a large scale. Independently from the final product, this objective requires the optimization of biomass productivity and thus of microalgae ability to exploit light for CO 2 fixation. Light is a highly variable environmental parameter, continuously changing depending on seasons, time of the day, and weather conditions. In microalgae large scale cultures, cell self-shading causes inhomogeneity in light distribution and, because of mixing, cells move between different parts of the culture, experiencing abrupt changes in light exposure. Microalgae evolved multiple regulatory mechanisms to deal with dynamic light conditions that, however, are not adapted to respond to the complex mixture of natural and artificial fluctuations found in large-scale cultures, which can thus drive to oversaturation of the photosynthetic machinery, leading to consequent oxidative stress. In this work, the present knowledge on the regulation of photosynthesis and its implications for the maximization of microalgae biomass productivity are discussed. Fast mechanisms of regulations, such as Non-Photochemical-Quenching and cyclic electron flow, are seminal to respond to sudden fluctuations of light intensity. However, they are less effective especially in the 1–100 s time range, where light fluctuations were shown to have the strongest negative impact on biomass productivity. On the longer term, microalgae modulate the composition and activity of the photosynthetic apparatus to environmental conditions, an acclimation response activated also in cultures outdoors. While regulation of photosynthesis has been investigated mainly in controlled lab-scale conditions so far, these mechanisms are highly impactful also in cultures outdoors, suggesting that the integration of detailed knowledge from microalgae large-scale cultivation is essential to drive more effective efforts to optimize biomass productivity.
Journal Article
Alternative electron transport mediated by flavodiiron proteins is operational in organisms from cyanobacteria up to gymnosperms
by
Roman Kouřil
,
Petr Ilík
,
Tomas Morosinotto
in
alternative electron transport
,
Angiosperms
,
Arabidopsis
2017
Photo-reduction of O2 to water mediated by flavodiiron proteins (FDPs) represents a safety valve for the photosynthetic electron transport chain in fluctuating light. So far, the FDPmediated O2 photo-reduction has been evidenced only in cyanobacteria and the moss Physcomitrella; however, a recent phylogenetic analysis of transcriptomes of photosynthetic organisms has also revealed the presence of FDP genes in several nonflowering plant groups. What remains to be clarified is whether the FDP-dependent O2 photo-reduction is actually operational in these organisms.
We have established a simple method for the monitoring of FDP-mediated O2 photoreduction, based on the measurement of redox kinetics of P700 (the electron donor of photosystem I) upon dark-to-light transition. The O2 photo-reduction is manifested as a fast reoxidation of P700. The validity of the method was verified by experiments with transgenic organisms, namely FDP knock-out mutants of Synechocystis and Physcomitrella and transgenic Arabidopsis plants expressing FDPs from Physcomitrella.
We observed the fast P700 re-oxidation in representatives of all green plant groups excluding angiosperms.
Our results provide strong evidence that the FDP-mediated O2 photo-reduction is functional in all nonflowering green plant groups. This finding suggests a major change in the strategy of photosynthetic regulation during the evolution of angiosperms.
Journal Article
Zeaxanthin Binds to Light-Harvesting Complex Stress-Related Protein to Enhance Nonphotochemical Quenching in Physcomitrella patens
by
Pinnola, Alberta
,
Alboresi, Alessandro
,
Morosinotto, Tomas
in
Adaptation, Physiological
,
Biosynthetic Pathways
,
Bryopsida - genetics
2013
Nonphotochemical quenching (NPQ) dissipates excess energy to protect the photosynthetic apparatus from excess light. The moss Physcomitrella patens exhibits strong NPQ by both algal-type light-harvesting complex stress-related (LHCSR)—dependent and plant-type S subunit of Photosystem II (PSBS)-dependent mechanisms. In this work, we studied the dependence of NPQ reactions on zeaxanthin, which is synthesized under light stress by violaxanthin deepoxidase (VDE) from preexisting violaxanthin. We produced vde knockout (KO) plants and showed they underwent a dramatic reduction in thermal dissipation ability and enhanced photoinhibition in excess light conditions. Multiple mutants (vde lhcsr KO and vde psbs KO) showed that zeaxanthin had a major influence on LHCSR-dependent NPQ, in contrast with previous reports in Chlamydomonas reinhardtii. The PSBS-dependent component of quenching was less dependent on zeaxanthin, despite the near-complete violaxanthin to zeaxanthin exchange in LHC proteins. Consistent with this, we provide biochemical evidence that native LHCSR protein binds zeaxanthin upon excess light stress. These findings suggest that zeaxanthin played an important role in the adaptation of modern plants to the enhanced levels of oxygen and excess light intensity of land environments.
Journal Article
Plant biodiversity and regulation of photosynthesis in the natural environment
by
Baldan, Barbara
,
Alboresi, Alessandro
,
Sello, Simone
in
Agriculture
,
Angiospermae
,
Angiosperms
2019
Photosynthesis is regulated in response to dynamic environmental conditions to satisfy plant metabolic demands while also avoiding possible over-excitation of the electron transport chain and the generation of harmful reactive oxygen species. Photosynthetic organisms evolved several mechanisms to modulate light harvesting and electron transport efficiency to respond to conditions changing at different timescales, going from fast sun flecks to slow seasonal variations. These regulatory mechanisms changed during evolution of photosynthetic organisms, also adapting to various ecological niches, making the investigation of plant biodiversity highly valuable to uncover conserved traits and plasticity of photosynthetic regulation and complement studies on model species. In this work, a set of plants belonging to different genera of angiosperms, gymnosperms, ferns and lycophytes were investigated by monitoring their photosynthetic parameters in different seasons looking for common trends and differences. In all plants, analysed photosynthetic electron transport rate was found to be modulated by growth light intensity, ensuring a balance between available energy and photochemical capacity. Growth light also influenced the threshold where heat dissipation of excitation energy, a mechanism called non-photochemical quenching (NPQ), was activated. On the contrary, NPQ amplitude did not correlate with light intensity experienced by the plants but was a species-specific feature. The zeaxanthin-dependent component of NPQ, qZ, was found to be the most variable in different plants and its modulation influenced the intensity and the kinetic properties of the response.
Journal Article
Physcomitrella patens mutants affected on heat dissipation clarify the evolution of photoprotection mechanisms upon land colonization
by
Giacometti, Giorgio M.
,
Alboresi, Alessandro
,
Morosinotto, Tomas
in
Algae
,
Antennas
,
Aquatic plants
2010
Light is the source of energy for photosynthetic organisms; when in excess, however, it also drives the formation of reactive oxygen species and, consequently, photoinhibition. Plants and algae have evolved mechanisms to regulate light harvesting efficiency in response to variable light intensity so as to avoid oxidative damage. Nonphotochemical quenching (NPQ) consists of the rapid dissipation of excess excitation energy as heat. Although widespread among oxygenic photosynthetic organisms, NPQ shows important differences in its machinery. In land plants, such as Arabidopsis thaliana, NPQ depends on the presence of PSBS, whereas in the green alga Chlamydomonas reinhardtii it requires a different protein called LHCSR. In this work, we show that both proteins are present in the moss Physcomitrella patens. By generating KO mutants lacking PSBS and/or LHCSR, we also demonstrate that both gene products are active in NPQ. Plants lacking both proteins are more susceptible to high light stress than WT, implying that they are active in photoprotection. These results suggest that NPQ is a fundamental mechanism for survival in excess light and that upon land colonization, photosynthetic organisms evolved a unique mechanism for excess energy dissipation before losing the ancestral one found in algae.
Journal Article
Oxygenic photosynthetic responses of cyanobacteria exposed under an M-dwarf starlight simulator: Implications for exoplanet’s habitability
by
Segalla, Anna
,
Pozzer, Anna Caterina
,
Cocola, Lorenzo
in
Acclimation
,
Acclimatization
,
Atmosphere
2023
The search for life on distant exoplanets is expected to rely on atmospheric biosignatures detection, such as oxygen of biological origin. However, it is not demonstrated how much oxygenic photosynthesis, which on Earth depends on visible light, could work under spectral conditions simulating exoplanets orbiting the Habitable Zone of M-dwarf stars, which have low light emission in the visible and high light emission in the far-red/near-infrared. By utilizing cyanobacteria, the first organisms to evolve oxygenic photosynthesis on our planet, and a starlight simulator capable of accurately reproducing the emission spectrum of an M-dwarf in the range 350-900 nm, we could answer this question.
We performed experiments with the cyanobacterium
PCC6912, capable of Far-Red Light Photoacclimation (FaRLiP), which allows the strain to harvest far-red in addition to visible light for photosynthesis, and
sp. PCC6803, a species unable to perform this photoacclimation, comparing their responses when exposed to three simulated light spectra: M-dwarf, solar and far-red. We analysed growth and photosynthetic acclimation features in terms of pigment composition and photosystems organization. Finally, we determined the oxygen production of the strains directly exposed to the different spectra.
Both cyanobacteria were shown to grow and photosynthesize similarly under M-dwarf and solar light conditions:
sp. by utilizing the few photons in the visible,
by harvesting both visible and far-red light, activating the FaRLiP response.
Our results experimentally show that an M-dwarf light spectrum could support a biological oxygen production similar to that in solar light at the tested light intensities, suggesting the possibility to discover such atmospheric biosignatures on those exoplanets if other boundary conditions are met.
Journal Article