Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
1,470
result(s) for
"Morrison, Thomas"
Sort by:
Inflammatory monocytes mediate control of acute alphavirus infection in mice
by
Haist, Kelsey C.
,
Morrison, Thomas E.
,
Davenport, Bennett J.
in
Adaptive immunity
,
Alphavirus
,
Aquatic insects
2017
Chikungunya virus (CHIKV) and Ross River virus (RRV) are mosquito-transmitted alphaviruses that cause debilitating acute and chronic musculoskeletal disease. Monocytes are implicated in the pathogenesis of these infections; however, their specific roles are not well defined. To investigate the role of inflammatory Ly6ChiCCR2+ monocytes in alphavirus pathogenesis, we used CCR2-DTR transgenic mice, enabling depletion of these cells by administration of diptheria toxin (DT). DT-treated CCR2-DTR mice displayed more severe disease following CHIKV and RRV infection and had fewer Ly6Chi monocytes and NK cells in circulation and muscle tissue compared with DT-treated WT mice. Furthermore, depletion of CCR2+ or Gr1+ cells, but not NK cells or neutrophils alone, restored virulence and increased viral loads in mice infected with an RRV strain encoding attenuating mutations in nsP1 to levels detected in monocyte-depleted mice infected with fully virulent RRV. Disease severity and viral loads also were increased in DT-treated CCR2-DTR+;Rag1-/- mice infected with the nsP1 mutant virus, confirming that these effects are independent of adaptive immunity. Monocytes and macrophages sorted from muscle tissue of RRV-infected mice were viral RNA positive and had elevated expression of Irf7, and co-culture of Ly6Chi monocytes with RRV-infected cells resulted in induction of type I IFN gene expression in monocytes that was Irf3;Irf7 and Mavs-dependent. Consistent with these data, viral loads of the attenuated nsP1 mutant virus were equivalent to those of WT RRV in Mavs-/- mice. Finally, reconstitution of Irf3-/-;Irf7-/- mice with CCR2-DTR bone marrow rescued mice from severe infection, and this effect was reversed by depletion of CCR2+ cells, indicating that CCR2+ hematopoietic cells are capable of inducing an antiviral response. Collectively, these data suggest that MAVS-dependent production of type I IFN by monocytes is critical for control of acute alphavirus infection and that determinants in nsP1, the viral RNA capping protein, counteract this response.
Journal Article
Complement Activation Contributes to Severe Acute Respiratory Syndrome Coronavirus Pathogenesis
2018
The complement system is a critical part of host defense to many bacterial, viral, and fungal infections. It works alongside pattern recognition receptors to stimulate host defense systems in advance of activation of the adaptive immune response. In this study, we directly test the role of complement in SARS-CoV pathogenesis using a mouse model and show that respiratory disease is significantly reduced in the absence of complement even though viral load is unchanged. Complement-deficient mice have reduced neutrophilia in their lungs and reduced systemic inflammation, consistent with the observation that SARS-CoV pathogenesis is an immune-driven disease. These data suggest that inhibition of complement signaling might be an effective treatment option following coronavirus infection.
Acute respiratory distress syndrome (ARDS) is immune-driven pathologies that are observed in severe cases of severe acute respiratory syndrome coronavirus (SARS-CoV) infection. SARS-CoV emerged in 2002 to 2003 and led to a global outbreak of SARS. As with the outcome of human infection, intranasal infection of C57BL/6J mice with mouse-adapted SARS-CoV results in high-titer virus replication within the lung, induction of inflammatory cytokines and chemokines, and immune cell infiltration within the lung. Using this model, we investigated the role of the complement system during SARS-CoV infection. We observed activation of the complement cascade in the lung as early as day 1 following SARS-CoV infection. To test whether this activation contributed to protective or pathologic outcomes, we utilized mice deficient in C3 (C3
–/–
), the central component of the complement system. Relative to C57BL/6J control mice, SARS-CoV-infected
C3
–/–
mice exhibited significantly less weight loss and less respiratory dysfunction despite equivalent viral loads in the lung. Significantly fewer neutrophils and inflammatory monocytes were present in the lungs of
C3
–/–
mice than in C56BL/6J controls, and subsequent studies revealed reduced lung pathology and lower cytokine and chemokine levels in both the lungs and the sera of
C3
–/–
mice than in controls. These studies identify the complement system as an important host mediator of SARS-CoV-induced disease and suggest that complement activation regulates a systemic proinflammatory response to SARS-CoV infection. Furthermore, these data suggest that SARS-CoV-mediated disease is largely immune driven and that inhibiting complement signaling after SARS-CoV infection might function as an effective immune therapeutic.
IMPORTANCE
The complement system is a critical part of host defense to many bacterial, viral, and fungal infections. It works alongside pattern recognition receptors to stimulate host defense systems in advance of activation of the adaptive immune response. In this study, we directly test the role of complement in SARS-CoV pathogenesis using a mouse model and show that respiratory disease is significantly reduced in the absence of complement even though viral load is unchanged. Complement-deficient mice have reduced neutrophilia in their lungs and reduced systemic inflammation, consistent with the observation that SARS-CoV pathogenesis is an immune-driven disease. These data suggest that inhibition of complement signaling might be an effective treatment option following coronavirus infection.
Journal Article
Mesenchymal Stromal Cells Modulate Macrophages in Clinically Relevant Lung Injury Models by Extracellular Vesicle Mitochondrial Transfer
by
O’Kane, Cecilia M.
,
Krasnodembskaya, Anna D.
,
Morrison, Thomas J.
in
Acute Lung Injury - physiopathology
,
Acute Lung Injury - therapy
,
Animals
2017
Acute respiratory distress syndrome (ARDS) remains a major cause of respiratory failure in critically ill patients. Mesenchymal stromal cells (MSCs) are a promising candidate for a cell-based therapy. However, the mechanisms of MSCs' effects in ARDS are not well understood. In this study, we focused on the paracrine effect of MSCs on macrophage polarization and the role of extracellular vesicle (EV)-mediated mitochondrial transfer.
To determine the effects of human MSCs on macrophage function in the ARDS environment and to elucidate the mechanisms of these effects.
Human monocyte-derived macrophages (MDMs) were studied in noncontact coculture with human MSCs when stimulated with LPS or bronchoalveolar lavage fluid (BALF) from patients with ARDS. Murine alveolar macrophages (AMs) were cultured ex vivo with/without human MSC-derived EVs before adoptive transfer to LPS-injured mice.
MSCs suppressed cytokine production, increased M2 macrophage marker expression, and augmented phagocytic capacity of human MDMs stimulated with LPS or ARDS BALF. These effects were partially mediated by CD44-expressing EVs. Adoptive transfer of AMs pretreated with MSC-derived EVs reduced inflammation and lung injury in LPS-injured mice. Inhibition of oxidative phosphorylation in MDMs prevented the modulatory effects of MSCs. Generating dysfunctional mitochondria in MSCs using rhodamine 6G pretreatment also abrogated these effects.
In the ARDS environment, MSCs promote an antiinflammatory and highly phagocytic macrophage phenotype through EV-mediated mitochondrial transfer. MSC-induced changes in macrophage phenotype critically depend on enhancement of macrophage oxidative phosphorylation. AMs treated with MSC-derived EVs ameliorate lung injury in vivo.
Journal Article
Innate immune surveillance of the circulation: A review on the removal of circulating virions from the bloodstream
by
Li, Frances S.
,
Carpentier, Kathryn S.
,
Morrison, Thomas E.
in
Adenoviruses
,
Antibodies
,
Antibody response
2022
Many viruses utilize the lymphohematogenous route for dissemination; however, they may not freely use this highway unchecked. The reticuloendothelial system (RES) is an innate defense system that surveys circulating blood, recognizing and capturing viral particles. Examination of the literature shows that the bulk of viral clearance is mediated by the liver; however, the precise mechanism(s) mediating viral vascular clearance vary between viruses and, in many cases, remains poorly defined. Herein, we summarize what is known regarding the recognition and capture of virions from the circulation prior to the generation of a specific antibody response. We also discuss the consequences of viral capture on viral pathogenesis and the fate of the captor cell. Finally, this understudied topic has implications beyond viral pathogenesis, including effects on arbovirus ecology and the application of virus-vectored gene therapies.
Journal Article
Chikungunya virus infection disrupts MHC-I antigen presentation via nonstructural protein 2
by
Parks, M. Guston
,
Ware, Brian C.
,
da Silva, Mariana O. L.
in
Analysis
,
Ankle
,
Antigen presentation
2024
Infection by chikungunya virus (CHIKV), a mosquito-borne alphavirus, causes severe polyarthralgia and polymyalgia, which can last in some people for months to years. Chronic CHIKV disease signs and symptoms are associated with the persistence of viral nucleic acid and antigen in tissues. Like humans and nonhuman primates, CHIKV infection in mice results in the development of robust adaptive antiviral immune responses. Despite this, joint tissue fibroblasts survive CHIKV infection and can support persistent viral replication, suggesting that they escape immune surveillance. Here, using a recombinant CHIKV strain encoding the fluorescent protein VENUS with an embedded CD8
+
T cell epitope, SIINFEKL, we observed a marked loss of both MHC class I (MHC-I) surface expression and antigen presentation by CHIKV-infected joint tissue fibroblasts. Both
in vivo
and
ex vivo
infected joint tissue fibroblasts displayed reduced cell surface levels of H2-K
b
and H2-D
b
MHC-I proteins while maintaining similar levels of other cell surface proteins. Mutations within the methyl transferase-like domain of the CHIKV nonstructural protein 2 (nsP2) increased MHC-I cell surface expression and antigen presentation efficiency by CHIKV-infected cells. Moreover, expression of WT nsP2 alone, but not nsP2 with mutations in the methyltransferase-like domain, resulted in decreased MHC-I antigen presentation efficiency. MHC-I surface expression and antigen presentation was rescued by replacing VENUS-SIINFEKL with SIINFEKL tethered to β2-microglobulin in the CHIKV genome, which bypasses the requirement for peptide processing and TAP-mediated peptide transport into the endoplasmic reticulum. Collectively, this work suggests that CHIKV escapes the surveillance of antiviral CD8
+
T cells, in part, by nsP2-mediated disruption of MHC-I antigen presentation.
Journal Article
The Clinical Features, Pathogenesis and Methotrexate Therapy of Chronic Chikungunya Arthritis
by
Amaral, J. Kennedy
,
Taylor, Peter C.
,
Morrison, Thomas E. “Tem”
in
Aedes - virology
,
Animals
,
Antibodies
2019
Chikungunya fever (CHIKF) is an emerging viral infection that has spread widely, along with its Aedes vectors, throughout the tropics and beyond, causing explosive epidemics of acute illness and persistent disabling arthritis. The rheumatic symptoms associated with chikungunya virus (CHIKV) infection include polyarthralgia, polyarthritis, morning stiffness, joint edema, and erythema. Chronic CHIK arthritis (CCA) often causes severe pain and associated disability. The pathogenesis of CCA is not well understood. Proposed hypotheses include the persistence of a low level of replicating virus in the joints, the persistence of viral RNA in the synovium, and the induction of autoimmunity. In this review, we describe the main hypotheses of CCA pathogenesis, some of which support methotrexate (MTX) treatment which has been shown to be effective in preliminary studies in CCA.
Journal Article
Mutations in chikungunya virus nsP4 decrease viral fitness and sensitivity to the broad-spectrum antiviral 4′-Fluorouridine
by
Drobish, Adam M.
,
Lello, Laura Sandra
,
Greninger, Alexander L.
in
Animal models
,
Animals
,
Antiviral agents
2025
Chikungunya virus (CHIKV) is an arthritogenic alphavirus that has re-emerged to cause large outbreaks of human infections worldwide. There are currently no approved antivirals for treatment of CHIKV infection. Recently, we reported that the ribonucleoside analog 4′-fluorouridine (4′-FlU) is a highly potent inhibitor of CHIKV replication, and targets the viral nsP4 RNA dependent RNA polymerase. In mouse models, oral therapy with 4′-FlU diminished viral tissue burdens and virus-induced disease signs. To provide critical evidence for the potential of 4′-FlU as a CHIKV antiviral, here we selected for CHIKV variants with decreased 4′-FlU sensitivity, identifying two pairs of mutations in nsP2 and nsP4. The nsP4 mutations Q192L and C483Y were predominantly responsible for reduced sensitivity. These variants were still inhibited by higher concentrations of 4′-FlU, and the mutations did not change nsP4 fidelity or provide a virus fitness advantage in vitro or in vivo. Pathogenesis studies in mice showed that the nsP4-C483Y variant caused similar disease and viral tissue burden as WT CHIKV, while the nsP4-Q192L variant was strongly attenuated. Together these results support the potential of 4′-FlU to be an important antiviral against CHIKV.
Journal Article