Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,465 result(s) for "Morrison, Thomas A."
Sort by:
Livestock movement informs the risk of disease spread in traditional production systems in East Africa
In Africa, livestock are important to local and national economies, but their productivity is constrained by infectious diseases. Comprehensive information on livestock movements and contacts is required to devise appropriate disease control strategies; yet, understanding contact risk in systems where herds mix extensively, and where different pathogens can be transmitted at different spatial and temporal scales, remains a major challenge. We deployed Global Positioning System collars on cattle in 52 herds in a traditional agropastoral system in western Serengeti, Tanzania, to understand fine-scale movements and between-herd contacts, and to identify locations of greatest interaction between herds. We examined contact across spatiotemporal scales relevant to different disease transmission scenarios. Daily cattle movements increased with herd size and rainfall. Generally, contact between herds was greatest away from households, during periods with low rainfall and in locations close to dipping points. We demonstrate how movements and contacts affect the risk of disease spread. For example, transmission risk is relatively sensitive to the survival time of different pathogens in the environment, and less sensitive to transmission distance, at least over the range of the spatiotemporal definitions of contacts that we explored. We identify times and locations of greatest disease transmission potential and that could be targeted through tailored control strategies.
A multi-method approach to delineate and validate migratory corridors
Context Managers are faced with numerous methods for delineating wildlife movement corridors, and often must make decisions with limited data. Delineated corridors should be robust to different data and models. Objectives We present a multi-method approach for delineating and validating wildlife corridors using multiple data sources, which can be used conserve landscape connectivity. We used this approach to delineate and validate migration corridors for wildebeest ( Connochaetes taurinus ) in the Tarangire Ecosystem of northern Tanzania. Methods We used two types of locational data (distance sampling detections and GPS collar locations), and three modeling methods (negative binomial regression, logistic regression, and Maxent), to generate resource selection functions (RSFs) and define resistance surfaces. We compared two corridor detection algorithms (cost-distance and circuit theory), to delineate corridors. We validated corridors by comparing random and wildebeest locations that fell within corridors, and cross-validated by data type. Results Both data types produced similar RSFs. Wildebeest consistently selected migration habitat in flatter terrain farther from human settlements. Validation indicated three of the combinations of data type, modeling, and corridor detection algorithms (detection data with Maxent modeling, GPS collar data with logistic regression modeling, and GPS collar data with Maxent modeling, all using cost-distance) far outperformed the other seven. We merged the predictive corridors from these three data-method combinations to reveal habitat with highest probability of use. Conclusions The use of multiple methods ensures that planning is able to prioritize conservation of migration corridors based on all available information.
Computer-Assisted Photo Identification Outperforms Visible Implant Elastomers in an Endangered Salamander, Eurycea tonkawae
Despite recognition that nearly one-third of the 6300 amphibian species are threatened with extinction, our understanding of the general ecology and population status of many amphibians is relatively poor. A widely-used method for monitoring amphibians involves injecting captured individuals with unique combinations of colored visible implant elastomer (VIE). We compared VIE identification to a less-invasive method - computer-assisted photographic identification (photoID) - in endangered Jollyville Plateau salamanders (Eurycea tonkawae), a species with a known range limited to eight stream drainages in central Texas. We based photoID on the unique pigmentation patterns on the dorsal head region of 1215 individual salamanders using identification software Wild-ID. We compared the performance of photoID methods to VIEs using both 'high-quality' and 'low-quality' images, which were taken using two different camera types and technologies. For high-quality images, the photoID method had a false rejection rate of 0.76% compared to 1.90% for VIEs. Using a comparable dataset of lower-quality images, the false rejection rate was much higher (15.9%). Photo matching scores were negatively correlated with time between captures, suggesting that evolving natural marks could increase misidentification rates in longer term capture-recapture studies. Our study demonstrates the utility of large-scale capture-recapture using photo identification methods for Eurycea and other species with stable natural marks that can be reliably photographed.
Grizzly bear predation links the loss of native trout to the demography of migratory elk in Yellowstone
The loss of aquatic subsidies such as spawning salmonids is known to threaten a number of terrestrial predators, but the effects on alternative prey species are poorly understood. At the heart of the Greater Yellowstone ecosystem, an invasion of lake trout has driven a dramatic decline of native cutthroat trout that migrate up the shallow tributaries of Yellowstone Lake to spawn each spring. We explore whether this decline has amplified the effect of a generalist consumer, the grizzly bear, on populations of migratory elk that summer inside Yellowstone National Park (YNP). Recent studies of bear diets and elk populations indicate that the decline in cutthroat trout has contributed to increased predation by grizzly bears on the calves of migratory elk. Additionally, a demographic model that incorporates the increase in predation suggests that the magnitude of this diet shift has been sufficient to reduce elk calf recruitment (4–16%) and population growth (2–11%). The disruption of this aquatic–terrestrial linkage could permanently alter native species interactions in YNP. Although many recent ecological changes in YNP have been attributed to the recovery of large carnivores—particularly wolves—our work highlights a growing role of human impacts on the foraging behaviour of grizzly bears.
Non‐local effects of human activity on the spatial distribution of migratory wildlife in Serengeti National Park, Tanzania
Human activities are transforming landscapes and altering the structure and functioning of ecosystems worldwide and often result in sharp contrasts between human‐dominated landscapes and adjacent natural habitats that lead to the creation of hard edges and artificial boundaries. The configuration of these boundaries could influence local biotic interactions and animal behaviours. Here, we investigate whether boundaries of different degrees of ‘hardness’ affect space utilization by migratory species in Serengeti National Park, Tanzania. We deployed camera traps along transects perpendicular to the national park boundary at three different locales. The transects were located in areas that consisted of two types of human–wildlife interface: a sudden transition from the national park into agro‐pastoral land use (termed a ‘hard’ boundary) and a more gradual transition mediated by a shared usage area (termed a ‘soft’ boundary). Camera traps were placed at 2 km intervals along each 10 km transect from the edge towards the core of the park and were programmed to collect images hourly between dawn and dusk between June 2016 and March 2019. We used a deep neural network to detect the presence of wildlife within images and then used a Bayesian model with diffuse priors to estimate parameters of a generalized linear model with a Bernoulli likelihood. We explored the binomial probability of either wildebeest or zebra presence as a function of distance to the boundary, the rate of grass greening or drying (dNDVI) and the concentration of grass protein. There was a strong negative effect of distance to boundary on the probability of detecting wildebeest or zebra; however, this was only observed where the transition from human‐dominated landscape to protected areas was sudden. Conversely, soft boundaries had little to no effect on the probability of detecting wildebeest or zebra. The results suggest that boundary type affects migratory species occurrence. The implications of these findings suggest that hard boundaries reduce the effective size of conservation areas; for many species, the area used by wildlife is likely less than the gazetted area under protection. The impacts may be severe especially for narrow protected areas or dispersal corridors. Landscape transformations largely due to human activities can alter structure and functioning of ecosystems worldwide. As such, the anthropogenically modified landscapes adjacent to protected areas create a sudden transition between human dominated landscape and the protected area. Consequently, due to such sudden transitions in landscape structure, hard boundaries or edges emerge which could influence local biotic interactions and animal behaviour. Here, we show that migratory species respond to anthropogenic activities/transformations occurring in landscapes adjacent to protected areas by moving towards the core of the park. As such, human footprint in landscapes adjacent to protected areas can jeopardise biodiversity integrity especially for narrow protected areas or wildlife corridors.
Cross-boundary human impacts compromise the Serengeti-Mara ecosystem
Protected areas provide major benefits for humans in the form of ecosystem services, but landscape degradation by human activity at their edges may compromise their ecological functioning. Using multiple lines of evidence from 40 years of research in the Serengeti-Mara ecosystem, we find that such edge degradation has effectively “squeezed” wildlife into the core protected area and has altered the ecosystem’s dynamics even within this 40,000-square-kilometer ecosystem. This spatial cascade reduced resilience in the core and was mediated by the movement of grazers, which reduced grass fuel and fires, weakened the capacity of soils to sequester nutrients and carbon, and decreased the responsiveness of primary production to rainfall. Similar effects in other protected ecosystems worldwide may require rethinking of natural resource management outside protected areas.
Tracking animal movements using biomarkers in tail hairs: a novel approach for animal geolocating from sulfur isoscapes
Background Current animal tracking studies are most often based on the application of external geolocators such as GPS and radio transmitters. While these technologies provide detailed movement data, they are costly to acquire and maintain, which often restricts sample sizes. Furthermore, deploying external geolocators requires physically capturing and recapturing of animals, which poses an additional welfare concern. Natural biomarkers provide an alternative, non-invasive approach for addressing a range of geolocation questions and can, because of relatively low cost, be collected from many individuals thereby broadening the scope for population-wide inference. Methods We developed a low-cost, minimally invasive method for distinguishing between local versus non-local movements of cattle using sulfur isotope ratios (δ 34 S) in cattle tail hair collected in the Greater Serengeti Ecosystem, Tanzania. Results We used a Generalized Additive Model to generate a predicted δ 34 S isoscape across the study area. This isoscape was constructed using spatial smoothers and underpinned by the positive relationship between δ 34 S values and lithology. We then established a strong relationship between δ 34 S from recent sections of cattle tail hair and the δ 34 S from grasses sampled in the immediate vicinity of an individual’s location, suggesting δ 34 S in the hair reflects the δ 34 S in the environment. By combining uncertainty in estimation of the isoscape, with predictions of tail hair δ 34 S given an animal’s position in the isoscape we estimated the anisotropic distribution of travel distances across the Serengeti ecosystem sufficient to detect movement using sulfur stable isotopes. Conclusions While the focus of our study was on cattle, this approach can be modified to understand movements in other mobile organisms where the sulfur isoscape is sufficiently heterogeneous relative to the spatial scale of animal movements and where tracking with traditional methods is difficult.
Grass competition overwhelms effects of herbivores and precipitation on early tree establishment in Serengeti
1. Savanna ecosystems span a diverse range of climates, edaphic conditions, and disturbance regimes, the complexity of which has stimulated long-standing interest in the mechanisms that maintain tree-grass coexistence. One hypothesis suggests that tree establishment is strongly limited by one or several demographic bottlenecks at early stages of the tree life cycle. A major impediment to testing this hypothesis is the lack of data on the relative strengths of different bottlenecks across key environmental gradients. 2. To identify demographic bottlenecks that limit early tree establishment (0-18 months), we conducted a series of transplant experiments with two savanna trees species (Acacia robusta and Acacia tortilis) across a natural rainfall and soil fertility gradient in the Serengeti ecosystem, Tanzania. We tested the interactive effects of precipitation, herbivory, seed scarification, grass competition, water limitation, and tree species identity on two key life stages: germination and early seedling survival (0-2 months), and juvenile seedling survival (2-18 months). 3. Germination and early seedling survival increased as a function of rainfall, in the absence of herbivores and when seeds were scarified. Juvenile seedling survival, in contrast, decreased with rainfall but increased in the absence of herbivores. Grass removal had the single strongest (positive) effect on juvenile seedling survival of any treatment. Soil moisture monitoring and grass-addition treatments revealed that grasses negatively affected seedlings in ways that were not necessarily linked to soil moisture. 4. A demographic model combining all effects across early life stages showed that the strength of grass competition on juvenile seedling survival was the key factor limiting early tree establishment. While rainfall had an unexpected opposing effect on the two life stages, the net effect of mean annual precipitation on early tree establishment was positive. 5. Synthesis. Successful tree establishment in Serengeti is maximized by a seemingly unlikely sequence of events: (a) scarification of seeds by browsers, (b) heavy rainfall to promote germination, (c) intensive grazing (but absence of browsers), and (d) dry conditions during juvenile seedling growth (>2 months) to reduce competition with grasses. By considering a wide suite of conditions and their interactions, our experimental results are relevant to ongoing debates about savanna vegetation dynamics and structural shifts in tree:grass ratios.
From single steps to mass migration: the problem of scale in the movement ecology of the Serengeti wildebeest
A central question in ecology is how to link processes that occur over different scales. The daily interactions of individual organisms ultimately determine community dynamics, population fluctuations and the functioning of entire ecosystems. Observations of these multiscale ecological processes are constrained by various technological, biological or logistical issues, and there are often vast discrepancies between the scale at which observation is possible and the scale of the question of interest. Animal movement is characterized by processes that act over multiple spatial and temporal scales. Second-by-second decisions accumulate to produce annual movement patterns. Individuals influence, and are influenced by, collective movement decisions, which then govern the spatial distribution of populations and the connectivity of meta-populations. While the field of movement ecology is experiencing unprecedented growth in the availability of movement data, there remain challenges in integrating observations with questions of ecological interest. In this article, we present the major challenges of addressing these issues within the context of the Serengeti wildebeest migration, a keystone ecological phenomena that crosses multiple scales of space, time and biological complexity. This article is part of the theme issue 'Collective movement ecology'.
Elephant damage, not fire or rainfall, explains mortality of overstorey trees in Serengeti
Generalizations about the drivers of tree demography in tropical savannas continue to prove difficult because of the complex and dynamic interactions involved, and because multi‐year data sets spanning meaningful gradients in potential drivers are lacking. Overstorey trees play disproportionate roles in the long‐term dynamics and functioning of savanna ecosystems. Understanding demographic patterns in these trees is complicated by their resprouting ability after being top‐killed and few studies have attempted to separate top‐kill from true mortality events. We examined the interactive effects of fire frequency, mean annual precipitation and elephant herbivory on overstorey (>2 m) tree mortality between 2009 and 2014 across 32 permanent vegetation plots in the Serengeti Ecosystem, Tanzania. Mean tree mortality over the study period was 0.28 ± 0.02 (0.07 year⁻¹). Among trees that were top‐killed (19.1% of all individuals), 31.2% resprouted. Mortality was driven largely by elephant herbivory, though mortality rates varied considerably across space and tree species. Fire frequency and mean annual rainfall were weak predictors of tree mortality. Over the 5 year period, chronic elephant herbivory (i.e. repeated through time) was a stronger predictor of tree mortality than maximum elephant herbivory, suggesting that repeated, low‐intensity damage from elephants was more important to mortality than acute, but infrequent, damage. Elephants disproportionately damaged certain tree species relative to their availability on the landscape, and the tolerance to damage differed by species as well. Acacia senegal was strongly selected and appeared to have low tolerance to damage when it occurred, resulting in a mortality rate of 0.736 ± 0.052 (0.234 year⁻¹) over the study period. Top‐killing and resprouting rates varied across species, with Acacias generally having low resprout rates. Synthesis. Our study highlights the considerable role that chronic herbivory plays in structuring savanna tree populations, irrespective of prevailing fire and rainfall conditions, and provides important vegetative context to the dramatic recent declines and (in the case of Serengeti) increases in savanna elephant densities in sub‐Saharan Africa.