Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3 result(s) for "Mosqueda, Nerick"
Sort by:
A comprehensive transcriptional map of primate brain development
The transcriptional underpinnings of brain development remain poorly understood, particularly in humans and closely related non-human primates. We describe a high-resolution transcriptional atlas of rhesus monkey ( Macaca mulatta ) brain development that combines dense temporal sampling of prenatal and postnatal periods with fine anatomical division of cortical and subcortical regions associated with human neuropsychiatric disease. Gene expression changes more rapidly before birth, both in progenitor cells and maturing neurons. Cortical layers and areas acquire adult-like molecular profiles surprisingly late in postnatal development. Disparate cell populations exhibit distinct developmental timing of gene expression, but also unexpected synchrony of processes underlying neural circuit construction including cell projection and adhesion. Candidate risk genes for neurodevelopmental disorders including primary microcephaly, autism spectrum disorder, intellectual disability, and schizophrenia show disease-specific spatiotemporal enrichment within developing neocortex. Human developmental expression trajectories are more similar to monkey than rodent, although approximately 9% of genes show human-specific regulation with evidence for prolonged maturation or neoteny compared to monkey. A high-resolution gene expression atlas of prenatal and postnatal brain development of rhesus monkey charts global transcriptional dynamics in relation to brain maturation, while comparative analysis reveals human-specific gene trajectories; candidate risk genes associated with human neurodevelopmental disorders tend to be co-expressed in disease-specific patterns in the developing monkey neocortex. Gene expression in the primate brain Following the publication of the mouse and human brain gene expression atlases in recent years, Ed Lein and colleagues now present a high-resolution transcriptional atlas of pre- and post-natal brain development for the rhesus monkey — the dominant non-human primate model for human brain development and disease. The data charts global transcriptional dynamics in relation to brain maturation, while comparative analysis reveals human-specific gene trajectories; candidate risk genes associated with human neurodevelopmental disorders tend to be co-expressed in disease-specific patterns in the developing monkey neocortex.
Transcriptional landscape of the prenatal human brain
The anatomical and functional architecture of the human brain is mainly determined by prenatal transcriptional processes. We describe an anatomically comprehensive atlas of the mid-gestational human brain, including de novo reference atlases, in situ hybridization, ultra-high-resolution magnetic resonance imaging (MRI) and microarray analysis on highly discrete laser-microdissected brain regions. In developing cerebral cortex, transcriptional differences are found between different proliferative and post-mitotic layers, wherein laminar signatures reflect cellular composition and developmental processes. Cytoarchitectural differences between human and mouse have molecular correlates, including species differences in gene expression in subplate, although surprisingly we find minimal differences between the inner and outer subventricular zones even though the outer zone is expanded in humans. Both germinal and post-mitotic cortical layers exhibit fronto-temporal gradients, with particular enrichment in the frontal lobe. Finally, many neurodevelopmental disorder and human-evolution-related genes show patterned expression, potentially underlying unique features of human cortical formation. These data provide a rich, freely-accessible resource for understanding human brain development. A spatially resolved transcriptional atlas of the mid-gestational developing human brain has been created using laser-capture microdissection and microarray technology, providing a comprehensive reference resource which also enables new hypotheses about the nature of human brain evolution and the origins of neurodevelopmental disorders. New whole-brain mapping resources With President Barack Obama's BRAIN (Brain Research through Advancing Innovative Neurotechnologies) initiative now entering year two, this issue of Nature presents two landmark papers that mobilize 'big science' resources to the cause. Hongkui Zeng and colleagues present the first brain-wide, mesoscale connectome for a mammalian species — the laboratory mouse — based on cell-type-specific tracing of axonal projections. The wiring diagram of a complete nervous system has long been available for a small roundworm, but neuronal connectivity data for larger animals has been patchy until now. The new three-dimensional Allen Mouse Brain Connectivity Atlas is a whole-brain connectivity matrix that will provide insights into how brain regions communicate. Much of the data generated in this project will be of relevance to investigations of neural networks in humans and should help to further our understanding of human brain connectivity and its involvement in brain disorders. In a separate report Ed Lein and colleagues present a transcriptional atlas of the mid-gestational human brain at high spatial resolution, based on laser microdissection and DNA microarray technology. The structure and function of the human brain is largely determined by prenatal transcriptional processes that initiate gene expression, but our understanding of the developing brain has been limited. The new data set reveals transcriptional signatures for developmental processes associated with the massive expansion of neocortex during human evolution, and suggests new cortical germinal zones or postmitotic neurons as sites of dynamic expression for many genes associated with neurological or psychiatric disorders.
Genome-wide atlas of gene expression in the adult mouse brain
Molecular approaches to understanding the functional circuitry of the nervous system promise new insights into the relationship between genes, brain and behaviour. The cellular diversity of the brain necessitates a cellular resolution approach towards understanding the functional genomics of the nervous system. We describe here an anatomically comprehensive digital atlas containing the expression patterns of ∼20,000 genes in the adult mouse brain. Data were generated using automated high-throughput procedures for in situ hybridization and data acquisition, and are publicly accessible online. Newly developed image-based informatics tools allow global genome-scale structural analysis and cross-correlation, as well as identification of regionally enriched genes. Unbiased fine-resolution analysis has identified highly specific cellular markers as well as extensive evidence of cellular heterogeneity not evident in classical neuroanatomical atlases. This highly standardized atlas provides an open, primary data resource for a wide variety of further studies concerning brain organization and function. Brain bank A new frontier has been reached in both neuroscience and genetics. The expression of each of the roughly 22,000 genes of the mouse genome has been mapped, at cellular resolution, across all major structures of the mouse brain. This achievement is part of the Allen Brain Atlas project. Lein et al . describe the development of the atlas (freely available on http://www.brain-map.org ) and report gene expression patterns that both support and challenge established views of brain anatomy. The atlas includes in situ images and 'heat maps' of signal intensity for each gene and brain region on a colorimetric scale. Despite predictions that the brain would express a limited number of genes, about 80% of all mouse genes are expressed; 70% of gene signals localize to fewer than 20% of all brain cells, suggesting that most localize to small brain regions. Cover image: Chris Lau, Allen Institute for Brain Science. The expression of each of the roughly 22,000 genes of the mouse genome has been mapped, at cellular resolution, across all major structures of the mouse brain, revealing that 80% of all genes appear to be expressed in the brain.